低温18650 3500
无磁低温18650 2200
过针刺低温18650 2200
低温磷酸3.2V 20Ah
21年专注锂电池定制

一种混合信号通用电池充电器设计

钜大LARGE  |  点击量:732次  |  2020年06月24日  

本文重要讨论两种最常见的化学电池:锂离子电池和镍氢电池。通过本文的讨论,能够设计出一种混合信号通用电池充电器,这种充电器可对这两种电池进行充电。


电池充电的系统考虑


要快速可靠地完成电池充电,要高性能的充电系统。以下系统参数是设计经济可靠的解决方法所必须考虑的。


输入源


许多应用都采用廉价的墙式适配器作为输入电源,这种适配器的输出电压高度依赖于变化较大的交流输入电压以及适配器负载电流。通过汽车适配器充电也面对同样的问题。汽车适配器的输出电压范围通常为9V"18V。


输出电压稳压精度


关于锂离子电池,为使电池容量的利用率达到最大,输出电压稳压精度至关重要。输出电压精度的微小降低都会导致电池容量大幅度减少。当然,出于安全以及可靠性方面的考虑,输出电压并不能无限度提高。图1示意了输出电压稳压精度的重要性。


充电结束方法


无论是锂离子电池还是镍氢电池,过充都是致命的弱点。关于安全可靠的充电系统来说,精确的充电结束方法是非常关键的。


电池温度监控


充电电池的充电温度范围通常在0°C"45°C之间,温度超出此范围时,对电池进行充电会导致电池过热。在充电过程中,电池内部的压力升高,因此,电池会膨胀,电池内部的高温和高压会导致电池机械开裂甚至爆炸,或者出现泄露。在0°C"45°C温度范围之外对电池进行充电会损害电池性能,或者缩短其预期寿命。


电池放电电流或反向漏电流


在许多应用中,即使输入电源断开,充电系统仍然与电池相连,因此,充电系统必须保证此时电池的漏电流尽可能小。允许的最大漏电流应当小于几个mA,比较理想的情况是低于1mA。


图1电池容量损失与充电电压不足的关系


电池充电器设计


考虑到前面的系统因素,可以开发出合适的充电管理系统。


线性解决方法


当输入源稳压良好时,可以采用线性充电解决方法。Microchip的MCp738xx线性电池充电器系列就是一个线性充电解决方法的例子。在这些应用中,线性解决方法供应了诸多优点,如易于使用、尺寸小以及低成本。


开关式充电解决方法


关于输入电压范围较宽的情况,如无稳压的AC-DC墙式适配器或汽车DC输入,开关式稳压器可以将电池充电器内部的功率损耗降到合理的水平。


选择拓扑结构


开关式稳压器拓扑结构决定了稳压器开关和无源滤波元件的构成。这种构成的差异随拓扑结构的选择而变化,从而要在复杂性、效率、噪声以及输出电压范围之间权衡。电源转换器的拓扑结构很多,但只有几种适用于5W"50W范围的电池充电器。


降压稳压器


降压稳压器是电池充电应用的一种常用拓扑结构。降压稳压器具有以下优点和缺点:


优点:1.复杂性低、单电感结构。2.关于同步应用,转换效率可达90%。


缺点:1.降压稳压器MOSFET开关集成的二极管在没有输入电压时会构成一个电池放电通路。因此要一个额外的阻断二极管,新增额外器件的同时也导致系统中出现额外的压降。2.降压稳压器的输入电流是脉冲式或间歇的。这种拓扑结构在电源的输入端出现较高的电磁干扰(EMI)。大多数降压稳压器都要额外的输入EMI滤波。3.降压稳压器只能比较输入电压低的输出电压进行稳压。有些应用的输入电压范围宽,覆盖到必需的输出电压范围。关于对多节锂离子电池单元组成的电池组进行充电的应用来说,这种情况很常见。4.发生降压开关短路故障时,输入至电池之间短路。关于不具备电池内部保护的镍氢电池,就会引发安全问题。5.降压稳压器要高端驱动(对N通道MOSFET开关),与低端拓扑结构相比,这会带来更大的复杂性。6.脉宽调制(pWM)控制器应用中的外部开关电流检测比较复杂。关于电池短路或负载短路等故障模式来说,限制开关电流非常重要,没有高速开关电流限制能力,电池充电器在发生短路时会被损坏。


钜大锂电,22年专注锂电池定制

钜大核心技术能力