低温18650 3500
无磁低温18650 2200
过针刺低温18650 2200
低温磷酸3.2V 20Ah
21年专注锂电池定制

聚酰亚胺在锂电池隔膜领域的研究取得了哪些进展

钜大LARGE  |  点击量:2139次  |  2018年05月17日  

  动力锂电池要求其使用的隔膜除了具有普通隔膜的基本性能外,还应具有更优异的耐高温性能,很多动力锂电池厂家要求隔膜具有150℃的高温热收缩性能。常规聚烯烃隔膜中,聚乙烯隔膜的熔点为130℃,超过熔点,隔膜则会熔断;而聚丙烯的熔点为163℃,当温度达到150℃时,隔膜将收缩30%以上。因此,传统的聚烯烃隔膜无法满足动力锂电池的要求,且传统的聚烯烃隔膜吸液、保液性差,增加了电池的内阻。


  聚酰亚胺(PI)拥有良好的热稳定性、化学稳定性和突出的力学性能,其长期使用温度可高达300℃,是现今综合性能最好的薄膜类绝缘材料。与聚烯烃隔膜相比,PI因具有极性基团而具有较好的锂离子电解液亲和性,因此被视为下一代锂离子电池隔膜材料。


  重点内容


  (1)PI表面改性复合薄膜


  传统的聚烯烃隔膜热尺寸稳定性较差,在电池温度较高时会发生收缩,甚至熔断,导致电池因正负极接触而短路,从而引发着火或爆炸。因此,研究者通过在聚烯烃表面涂覆陶瓷或复合PI等手段提高聚烯烃隔膜的热稳定性。


  用PI来改善基材隔膜热尺寸稳定性的方法主要有两种,一种是用PI溶液对基材膜进行改性,另一种是以PI多孔膜的方式对基材膜进行改性。


  在以PI溶液对热尺寸稳定性较差的隔膜进行表面改性时,PI与这类隔膜的复合方式包括涂覆、静电纺丝等。


  采用PI改善热尺寸稳定性较差的基材隔膜时,还可以采用PI多孔膜的改性方式。


  (2)采用PI单层隔膜


  PI除了被用于改性热稳定性较差的聚烯烃隔膜外,也可单独用于制备锂离子电池隔膜,在多种PI隔膜的制备方法中,以静电纺丝法、模板法、相转化法研究较多。


  静电纺丝是通过高压电场作用,使高聚物溶液或熔体在电场力的作用下,在毛细管Taylor锥顶被拉伸成超细纤维的一种新型技术。静电纺丝法是一种公认的制备超薄纳米纤维膜简单而有效的方法,静电纺丝法制备的纤维膜具有纤维直径小、表面积大、孔隙率高、精细程度一致等特点,自1996年Reneker首次提出可将静电纺丝技术应用于制备PI纳米纤维以来,人们在静电纺丝法制备PI隔膜方面做了大量研究。


  模板法是以具有一定结构尺寸且与聚酰胺酸不相容的致孔剂为模板,将聚酰胺酸与致孔剂混合后,经亚胺化后得到致孔剂/聚酰亚胺复合膜,再用模板脱除剂除去致孔剂制备PI多孔膜的方法。致孔剂可以是金属、金属氧化物、非金属氧化物、氢氧化物、碳酸化合物等。


  相转化法是指将一定组成的聚合物溶液,通过物理方法改变溶液的热力学状态,使均相的聚合物溶液发生相分离,最终转变为三维大分子网络式的凝胶结构。具体到PI多孔膜的制备方法有热致相转化法、高湿诱导相转化法、浸渍沉淀相转换法。其中,浸渍沉淀相转化法是比较常用的一种方法,其过程是将聚酰胺酸溶液或PI溶液刮涂在支撑体上,然后浸入该聚酰胺酸或PI的非溶中,使溶剂和非溶剂发生交换,达到一定程度之后液-固相分离,去除溶剂后,非溶剂所占的空间则形成PI膜的孔。


  其他方法,由于PI隔膜目前难以加工和量产,制备PI多孔膜的常用方法实用性欠佳,因此学者们还探索了其他制备PI多孔膜的方法,如烧结法、辐照刻蚀法、接枝或共聚不稳定链段法等。


  结束语


  随着电子信息和新能源产业的发展,对锂离子电池尤其是新能源汽车用动力电池的安全性提出了更高的要求。因此对动力锂电池隔膜的耐高温性能要求也相应提高,很多动力锂电池厂家要求隔膜具有150℃的高温热收缩性能。PI隔膜因具有出色的热稳定性和较好的电解液吸液保液性而被视为重点开发的下一代隔膜材料,为动力电池提供更好的安全保障。目前,国内外PI隔膜的研究虽然取得了较多的阶段性成果,但研究成果多停留在实验室研究阶段。同时,相对于现用的聚烯烃隔膜而言其力学性能较差,加工成本较高,批量生产所需设备、工艺还存在较多的问题,因此离产业化生产还有较长的距离。建议相应的科研院所、设备加工企业、隔膜生产企业及隔膜应用企业通过“产、学、研、用”的方式开展合作研究进行攻关,重点在PI隔膜配方及改性机理、配套生产设备及工艺、PI隔膜在锂电池中的应用方面开展研究工作,以缩短PI隔膜开发周期,加快PI隔膜的产业化进程。


钜大锂电,22年专注锂电池定制

钜大核心技术能力