低温18650 3500
无磁低温18650 2200
过针刺低温18650 2200
低温磷酸3.2V 20Ah
21年专注锂电池定制

氧还原反应因其在质子交换膜燃料电池中的重要性

钜大LARGE  |  点击量:926次  |  2019年03月02日  

近日,中国科学技术大学教授熊宇杰课题组与新加坡南洋理工大学DavidLou研究组合作,研究表明为实现高电催化性能,并非需要在催化剂表面具有大面积的高指数晶面覆盖度,该工作为电催化材料设计提供了新的视角,研究成果发表在《德国应用化学》。论文的共同第一作者是中国科大博士生马亮、高级工程师王成名和南洋理工大学博士后BaoYuXia。


氧还原反应因其在质子交换膜燃料电池中的重要性,已经引起了极大关注。该反应是一个较慢的过程,同时过电势通常能达到300mV左右,因此需要通过设计催化剂来提高该反应的活性。金属铂具有稳定的高性能,已被广泛用来催化氧还原反应。与常见的基础晶面相比,高指数晶面具有更多的台阶面和未配位饱和原子,从而展现出更高的催化活性。然而在电催化体系中,是否催化剂表面的高指数晶面覆盖度与电催化性能之间具有特定的关系尚未清楚。这一规律的阐明首先需要在材料合成上构造一系列具有可控高指数和基础晶面比例的纳米结构。


针对该挑战,熊宇杰课题组基于先前发展的具有{311}高指数晶面的铂多足分形结构(ACSNano2012,6,9797),发展了一种镍离子欠电位沉积的合成路线,实现了从多足分形结构表面的{311}高指数晶面向立方分形结构表面的{100}基础晶面的逐步演变。中国科大教授武晓君课题组进而通过理论模拟,揭示了镍离子在铂纳米晶体结构转变过程中的表面能调控作用。


基于该系列具有不同{100}晶面覆盖度的演变产物,研究人员通过系统的电化学与电子显微学表征,揭示了铂立方分形结构的平整表面有利于降低与电极的接触电阻,而其交界处的少量{311}高指数晶面赋予其活性位点。二者协同作用使得该主要覆盖{100}晶面的立方分形结构展现出优异的氧还原活性,优于具有更高{311}表面覆盖度的中间演变产物。这一“结构细节决定电催化性能”的发现将为未来电催化材料设计发展提供重要实验依据。


上述研究工作得到了国家自然科学基金、国家青年、中科院百人计划、校重要方向项目培育基金等项目的资助。

钜大锂电,22年专注锂电池定制

钜大核心技术能力