低温18650 3500
无磁低温18650 2200
过针刺低温18650 2200
低温磷酸3.2V 20Ah
21年专注锂电池定制

新一代电源核心:半导体和整流器新趋势

钜大LARGE  |  点击量:809次  |  2019年02月17日  

目前智能手机的发展趋势,系以更大的屏幕尺寸、更高的屏幕分辨率以及更快的处理器为主,但不断提高的硬件规格,使其耗电量也越来越可观,以2K屏幕来说,耗电量为1,080P屏幕的1.5倍以上,势必会增加锂电池的能量密度及提高充电速度,来延长手机使用的续航力。

所以,手机厂商为了兼顾手机轻薄外观的市场需求,电池容量设计以3,000~4,000mAh为主流,也因此缩短充电时间的快充技术应运而生。目前市场上主要的快充方案有高通(Qualcomm)的QuickCharge、联发科技(MediaTek)的PumpExpress以及OPPOVOOC等。

市场主要的快充方案

高通以提高充电电压来缩短充电时间,从最早的QC1.05V/2A(最大功率10W)充电规格以及QC2.0兼容5V/9V/12V/20V四种充电电压及最大3A的充电电流(最大功率18W),到QC3.0支援3.6V~20V的工作电压动态调节(最大功率22W),比传统5V/1A充电技术快4倍。

联发科与高通的QuickCharge相似,以恒定电流及提高充电电压至5~20V来实现更大的充电功率,最新的PumpExpress3.0宣称能在20分钟内将2,500mAh的电池从0%充到70%,比传统5V/1A充电技术快5倍。而OPPO则保持5V充电电压,提高充电电流至最高5A的方式来实现快速充电,宣称只需5分钟就可将容量3,000mAh的电池充入48%的电量。

为了缩短手机或是笔记型电脑等3C产品的充电时间,无论是提高充电电压,或是充电电流,各家快充技术的本质都在于提高充电器的功率,由早期5W提高至22W,甚至未来USBPowerDelivery充电协议,功率最高可达100W(20V/5A),大幅缩短充电时间,也因此大功率充电器需求量增加在未来是可预期的。随着电源功率的提高,电池势必变得体积更大、重量更重,因此业界持续投入许多心力于半导体构造及封装的研究与改良。

氮化镓半导体

近年来,金属氧化物半导体场效电晶体(MOSFET)已经成为切换电源的主要功率元件,从场效应晶体管(FET)、双极性结式晶体管(BJT)、MOSFET、到绝缘闸极双极晶体管(IGBT),现在出现了氮化镓(GaN),可让切换电源的体积大幅缩小。

例如,纳微半导体(Navitas)推出尺寸最小的65WUSB-PD(Type-C)电源转换器参考设计NVE028A,正是使用了GaN电晶体,相较于市面上现有基于硅(Si)功率元件的配接器尺寸[约98-115cc(6-7in3),重量约300g],Navitas基于AllGaN功率IC的65W配接器体积仅45cc(2.7in3),重量约60g,相当轻薄迷你。

就目前硅功率元件的切换电源来看,提高脉冲宽度调变(PWM)切换频率虽可缩小电源体积,但伴随着损耗提高而降低其转换效率,及电磁干扰(EMI)的增加,需投入更多的EMI解决对策,因此业界以65kHz为一折衷的选择。

虽然GaN具有切换速度快、导通损耗低、功率密度高等特性上的优势,但使用者直接将电路中的MOSFET换成GaNFET,其成效往往不符合预期,原因在于须以GaN为设计中心,选择电路线路架构及控制方法,才能将GaN的优势充份发挥。NavitasAllGaN功率IC,将GaNFET、IC与驱动电路及逻辑电路做了高密度的整合,简化复杂的线路设计,让设计者可以很容易的应用并发挥其特性。

碳化硅半导体

除了GaN,碳化硅(SiC)是目前发展较成熟的宽能隙(WBG)半导体材料,在新一代电源中扮演了重要的角色,与传统硅半导体相比,可应用在较高频率、电压与温度的严苛环境下,还可达到低耗损高效率的特性。随着全球对环境保护的重视,电子产品效率要求的提高,让GaN与SiC成为世界各国半导体业研究的重点。

硅基IGBT一般工作于20kHz以下的频率,受到材料特性的限制,高压高频的硅功率元件难以被实现,而碳化硅MOSFET不仅适合600~10kV的工作电压范围,同时具备优异的开关特性,能达到更低的开关损耗及更高的工作频率,如20kHz的SiCMOSFET损耗可以比3kHz的SiIGBT低一半,50A的SiC就可以代替150A的SiIGBT,SiCMOSFET的反向电荷Qrr也只有同规格SiMOSFET的5%,显示碳化硅有传统硅无可相比的优异特性。

另外,在碳化硅萧特基二极管(SiCSBD)方面,它具有理想的反向恢复特性,当二极管由顺偏导通转变为逆偏关闭时,SiCSBD极小的反向恢复电流可工作于更高的频率,在相同频率下也能有更高的效率。且SiCSBD具有正温度系数的特性,当元件温度上升时,顺向电压VF也随之变大,此特性若于并联使用时,可避免元件发生热失控(thermalrunaway)的状况,也因此拥有更高的工作温度,以及元件高温可靠度,因此广泛应用于开关电源中功率因素校正(PFC)电路上,PFC电路工作于300kHz以上,可缩小电感元件尺寸,使用SiCSBD可维持相同的工作效率。

在Si功率元件发展相对成熟的情况下,GaN与SiC功率元件虽具有特性上的优势,但在制程上,其开发成本的花费要求仍较高,也因此GaN与SiC功率元件的应用至今仍未真正的普及。

贴片型桥式整流器的优势

因应未来小尺寸、大功率配接器及快速充电器领域的开发,除了仰赖前述氮化镓和碳化硅半导体的持续发展,就目前的硅功率元件来说,在电源输入端的桥式整流器,用于充电器及电源配接器之交流(AC)输入端作全波整流功能,其封装形式也逐渐由体积较大的插件式,发展为轻薄短小的贴片型小尺寸封装。

例如智威科技(Zowie)的4A桥式整流器Z4GP40MH,正是使用了SuperChip片型二极管封装技术,将元件厚度由传统KBP插件式封装的3.5mm降低至1.3mm,元件尺寸也缩小至8.1x10.5mm,体积仅KBP插件式封装的17.5%,不仅可缩小元件尺寸节省空间,也符合高度有限制的特殊应用需求。

钜大锂电,22年专注锂电池定制

钜大核心技术能力