低温18650 3500
无磁低温18650 2200
过针刺低温18650 2200
低温磷酸3.2V 20Ah
21年专注锂电池定制

静态内阻和工作内阻常常不同,是什么因素影响了锂离子电池的内阻?

钜大LARGE  |  点击量:1316次  |  2021年04月07日  

1锂离子电池内阻的构成


锂离子电池内阻重要包括两个部分,欧姆内阻和极化内阻在温度恒定的条件下,欧姆电阻基本稳定不变,而极化电阻会随着影响极化水平的因素变动。


欧姆电阻重要由电极材料、电解液、隔膜电阻及集流体、极耳的连接等各部分零件的接触电阻组成,与电池的尺寸、结构、连接方式等有关。锂离子电池的端电压,指锂离子电池被连接在回路中处于工作状态时,检测到的电池正负极之间的电压,其数值等于锂离子电池电势减去欧姆内阻占压后,剩余的电压值。


观察下面图形,展示的是锂离子电池放电过程的电压-时间曲线的开始一段。电池开始放电后,曲线有一个瞬间压降ΔU1,这是回路通电瞬间,电压传感器检测到的电池两端电压从开路电压(等于电池电势)切换到端电压的结果,ΔU1就是欧姆内阻占压,ΔU2则是在放电结束时候,断开回路时,电池端电压曲线上出现的一段电压回升,同样是欧姆内阻带来的影响,ΔU1与ΔU2是相同的。


能够检测到纯欧姆内阻的时间比较短暂,因为随着电流逐渐上升至额定回路电流的过程中,极化现象逐渐加强,两种内阻的用途将混合到一起,不能分别。测量欧姆内阻的时间窗口在1~2ms以内。


极化内阻,从电芯内由电流出现那一刻开始跟着出现,随着电流的增大而增大,是电池内部各种阻碍带电离子抵达目的地的趋势总和。极化电阻可以分为电化学极化和浓差极化两部分。电化学极化是电解液中电化学反应的速度无法达到电子的移动速度造成的;浓差极化,是锂离子嵌入脱出正负极材料并在材料中移动的速度小于锂离子向电极集结的速度造成的。


上图电压时间曲线上的ΔU3一段,是回路断开后,电池端电压逐渐回升的一段,是电池内部去极化过程的体现,ΔU3的数值就是极化内阻的占压。在不同的放电状态下,ΔU3的数值并不相同。1锂离子电池工作过程


如上图所示,锂离子电池充放电过程的物理模型。蓝色箭头表示充电,红色箭头表示放电。蓝绿相间的晶格结构为正极材料,黑色层状为负极材料。目前主流的锂离子电池,一般按照正极材料类型命名,磷酸铁锂、锰酸锂等即为正极材料的类型;负极为石墨材质;正极集流体铝箔,负极集流体为铜箔。


下面以放电为例,描述一下锂离子电池放电时的物理过程。


外部负载接通后,在电池本体以外形成电流通路。由于正负极之间存在电势差,负极附近的电子首先通集流体和外部导线向正极移动;负极周围的锂离子浓度升高。从负极经过外部电路到达正极的电子,与正极附近的锂离子结合,嵌入正极材料,正极附近的锂离子浓度降低。正负极之间的锂离子浓度差形成。这样,就完成了电池放电过程的第一推动。


随着锂离子在离子浓度差的推动下离开负极,负极附近出现空缺,负极材料内的锂离子,从负极脱嵌,进入电解液中;大量锂离子从电解液中穿越隔膜,自负极向正极移动。同时,原本与锂离子以结合形态存在的电子,则通过外部电路去往正极。电池开始了按照负载的需求进行的放电过程。


充电是放电的逆过程,同样的脱嵌,移动,嵌入几个阶段,只是推动过程发展的动力来自于充电机,而离子的运动方向是自正极向负极运动。这里不再赘述。


2锂离子电池内阻构成


了解了锂离子电池的工作过程,那么过程中的阻碍因素,便形成了锂离子电池的内阻。


电池的内阻包括欧姆电阻和极化电阻。在温度恒定的条件下,欧姆电阻基本稳定不变,而极化电阻会随着影响极化水平的因素变动。


欧姆电阻重要由电极材料、电解液、隔膜电阻及集流体、极耳的连接等各部分零件的接触电阻组成,与电池的尺寸、结构、连接方式等有关。


极化电阻,加载电流的瞬间才出现的电阻,是电池内部各种阻碍带电离子抵达目的地的趋势总和。极化电阻可以分为电化学极化和浓差极化两部分。电化学极化是电解液中电化学反应的速度无法达到电子的移动速度造成的;浓差极化,是锂离子嵌入脱出正负极材料并在材料中移动的速度小于锂离子向电极集结的速度造成的。


3锂离子电池内阻影响因素


从上面的过程可以推演出电池内阻的影响因素。


3.1外加因素


温度,环境温度是各种电阻的重要影响因素,具体到锂离子电池,是由于温度影响电化学材料的活性,直接决定电化学反应的速度和离子运动的速度。


电流或者说负载的需求,一方面电流的大小与极化内阻有直接关联。大体趋势是电流越大,极化内阻越大。另一方面,电流的热效应,对电化学材质的活性出现影响。


3.2电池自身因素


正极材料,负极材料,锂离子嵌入和脱嵌的难易程度,决定了材料内阻的大小,是浓差极化电阻的一部分。


电解液,锂离子在电解液中的移动速率,受电解液导电率的影响,是电化学极化电阻的重要构成部分。


隔膜,隔膜自身电阻,直接构成欧姆内阻的一部分,同时其对锂离子移动速率的阻碍,又形成了一部分电化学极化电阻。


集流体电阻,部件连接电阻,是电池欧姆内阻的重要组成部分。


工艺水平,极片制作工艺、涂料是否均匀、压实密度如何,这些电芯加工过程中工艺水平的高低,也会对极化内阻造成直接影响。


4锂离子电池内阻测量


锂离子电池内阻测量方法,一般分为直流测量方法和交流测量方法两种。


4.1直流内阻测量方法


使用电流源,给电池施加一个短时脉冲,测量其端电压与开路电压的差。用这个差值除以测试电流即认为是电池的直流内阻。


锂离子电池极化内阻会受到加载电流大小的影响,为了尽量避开这个因素,直流测量内阻方法的通电时间比较短,并且加载电流比较大。


理论上,测量电流越小,越不会引起极化反应,减少极化电阻的干扰。但由于电池内阻本身很小,都是毫欧量级,电流过小,电压检测仪器受限于测量精度,无法排除测量误差对结果的干扰。因此,人们权衡仪器精度和极化内阻的影响,找到一个平衡二者关系的测量电流值。


关于普通电池单体来说,测量电流一般在5C-10C左右,很大。随着电芯容量的增大,或者多个电芯并联,其内阻是减小的,因此,假如没有仪器精度的提高,测量电流是很难降下来的。


4.2交流内阻测量方法


给电池加载一个幅值较小的交流输入作为激励,监测其端电压的响应情况。使用特定程序对数据进行分析,得出电池的交流内阻。分析得到的阻值,只与电池本身特性有关,与采用的激励信号大小无关。


由于电池电容特性的存在,激励信号的频率不同,其测量得到的阻值也不同。软件分析的结果可以用一组复数表示,横轴为实部,纵轴为虚部。


通过进一步的数据分析,人们可以从交流阻抗谱中得到这只电池的欧姆电阻,SEI膜的扩散电阻,SEI膜的电容值,电荷在电解液中传递的等效电容值以及电荷在电解液中扩散电阻值,进而绘制出电池等效模型,进行电池性能的进一步研究。一种等效电池模型,如下图所示。


5内阻在工程实践中的应用


内阻,作为锂离子电池的关键特性之一,对它的研究成果,可以在工程制造等多个领域得到应用。


内阻与电池荷电量有紧密关系,因此被应用于电池管理系统中的SOC估计;


内阻直接体现电池老化程度,有人把电芯内阻作为电池健康状态SOH的评估依据;


单体内阻一致性直接影响成组后的模组容量和寿命,因而被作为电芯分选配组的静态指标普遍应用;


内阻又是电池故障的重要指征,在动力锂电池包的故障诊断系统中,被研究使用;


内阻配合容量损失等指标,还可以判断电池是否存在析锂现象,被应用在梯次利用退役电池领域。


钜大锂电,22年专注锂电池定制

钜大核心技术能力