低温18650 3500
无磁低温18650 2200
过针刺低温18650 2200
低温磷酸3.2V 20Ah
21年专注锂电池定制

电动汽车锂离子动力锂电池在不同工况下有怎么样的特性?

钜大LARGE  |  点击量:1449次  |  2020年11月23日  

1试验部分


1.1试验对象与方法


本文以一款国产纯电动汽车为试验对象,锂离子动力锂电池组容量为180Ah,额定电压为345V,总储电量为34.5kWh,最大续航里程可达150km。锂离子动力锂电池运行的特点数据的采集,不仅可以通过试验室中对锂离子动力锂电池进行性能测试,还可以采用CAN卡总线以及管理平台联网监控与采集行车与电池工况的数据,采集示意图如图1。


本文试验重要基于实际工况,采用CAN卡以及运营管理平台采集电动汽车剩余电量、工作总电压、工作总电流以及最高/最低单体电压数据。利用采集的数据判断电池的工作状态,绘制相应工作曲线,分析电池性能状态,掌握电动汽车动力锂离子电池的特性。


1.2试验环境与工况


本文在市区不同道路工况下进行试验,分别为长距离工况、市区山坡工况以及高峰期堵车工况。


长距离工况试验重要在市区车流量较小的平坦路段,以匀速进行持续长距离行驶。市区山坡工况试验重要在市区山坡进行持续爬坡、下坡测试,山坡的最高海拔高度为74m左右,最高坡度为6.8%。堵车工况试验重要选择市区上下班高峰期的时段,在市区的重要干道进行。


试验时,环境温度范围为35℃,湿度范围为30%~90%,试验时间范围为45~90min。试验人员按表1的工况驾驶车辆进行试验。


2结果与讨论


采用CAN卡与运营管理平台采集三种不同工况下的实验数据,对电动汽车锂离子动力锂电池的特性进行分析。


2.1不同工况对锂离子动力锂电池SOC的影响


电池组以恒流进行持续放电,其工作电压会随着放电而降低,通常电池组在放电末期都有电压显著下降的现象,而且电池模块的过放电会引起模块性能、不可逆的衰退,从而引起整个电池组性能和使用寿命的下降。


为了保护电池,厂家对同批次的单体电池基本都设定一个合理的充放电终止电压。但在实际的使用过程中电池组放电电流倍率范围宽,电压变化大,所以在动力锂电池使用过程中,什么时候停止放电要根据电池的剩余容量、一致性和充放电终止电压等参数综合分析。


电池荷电状态(StateofCharge,SOC)描述了电池的剩余电量,是电池使用过程中的重要参数。荷电状态值是个相对量,一般用百分比的方式来表示,SOC的取值为:0~100%。动力锂电池的充放电过程是个复杂的电化学变化过程,SOC受到动力锂电池的基本特点参数和动力锂电池使用特性因素的影响。


本试验根据试验车行车过程中采集的工作电压以及SOC的数据,考察不同工况下锂离子动力锂电池工作电压及其SOC的影响,为电池管理系统的设计(如充放电终止电压等)供应可靠依据。


图2-4分别是试验得到的长距离工况、市区山坡工况以及高峰期堵车工况下工作电压与SOC的变化曲线。由图中可以看出,不同工况的影响下,动力锂电池的工作电压和SOC的变化趋势不同。


在长距离工况下,电动汽车以匀速在车流量较小的路段行驶,此时工作电压波动幅度较小,SOC下降较平缓;山坡行驶工况以及堵车工况下,多工作于加减速或刹车制动,此时工作电压波动幅度较大,且当SOC低于70%后,动力锂电池SOC有显著下降趋势。


因此综上可知,市区山坡工况、高峰期堵车工况对动力锂电池SOC的影响较长距离工况的大。此外,为延长电池的使用寿命,设置更具合理的充放电终止电压很有必要。


2.2不同工况对锂离子动力锂电池组端电压及其一致性的影响


尽管可以将电池组整体看作是单个高压电池,但仍需独立考虑每个单体电池的情况。这是由于,单体电池若是与其他电池发生偏差,经过长期的充放电周期后,其状态将会与其他电池出现严重偏离,从而导致电池组的故障与损坏。


因此,必须对单体电池进行监控,以确定其充放电状态,保证电池组安全有效的运行。本试验根据试验车行车过程中采集的工作电压以及单体电压的数据,考察不同工况对锂离子动力锂电池单体电压和工作电压的影响。


图5-7分别是试验得到的长距离工况、市区山坡工况以及高峰期堵车工况下工作电压与单体电压的变化曲线。


由图中可以看出,四种不同工况下的电池工作电压变化大体一致,工作电压的变化范围在340-360V之间。而关于单体电池应注意的是,当单体电压低于2.5V时,单体电压易继续下降损坏电池。因此要通过CAN总线实时监控单体电压,关于低于2.5V的单体电池及时进行调整或更换。


由图中可以看出,在四种工况运行过程中,单体电压的变化范围在3.2-3.4V之间,各单体电池的电压差小于0.2V,电压浮动较小,并且各单体电压均大于2.5V。另外,比较各图中的两个曲线,可以看出,单体电池电压的变化趋势和工作电压的变化总体一致。


有学者将电池组单体相对电压差(含义为最高电压和最低电压之差和单体标称电压的百分比)作为衡量其一致性程度的指标,进一步观察图5-7可知,长距离工况、市区山坡工况、高峰期堵车工况下电池组的单体相对电压差分别为2.9%,3.8%,3.5%,即市区山坡工况、高峰期堵车工况对电池组单体电压(一致性)的影响较长距离工况的大。为防止电池组的故障与损坏,对单体电池的电压进行监管非常重要。


2.3不同工况对锂离子动力锂电池工作电流的影响


由于电池存在一定的内阻,当电池长时间流过较大的电流时,电池温度会持续升高,假如不及时进行热管理,会严重影响电池的稳定性和使用寿命。


此外,Li+在正、负极的脱嵌能力有限,与之相对应的是锂离子电池最大允许充放电电流,而电流过大会导致极化电压升高,电池提到达到截止电压,影响电池的可用容量,假如电池长时间处在电流过大状态还会导致Li+的沉积,带来安全隐患,因此要在电池使用过程中,控制充放电电流在合理范围内。


本试验根据试验车行车过程中采集的工作电流的数据,考察不同工况对锂离子动力锂电池工作电流的影响。


图8-10是不同工况下工作电压与工作电流的变化曲线。电流为正值时,动力锂电池放电;当电流为负值时,动力锂电池充电。从图中可以看出,工作电流的变化与工作电压有关,当工作电压大时,工作电流低;工作电压小时,工作电流大。


此外,堵车工况下的工作电流零值与负值的比例较大,这是由于行车过程中的刹车制动回收能量所致。山坡工况下的工作电流值较长时间处在较高的水平上,这是由于此时试验车工作于加速或爬坡的工况。


而长距离工况下,由于行驶于市区车流量较小的平坦路段,工作电流正负值的变化较为均衡。综上可知,市区山坡工况、高峰期堵车工况对动力锂电池工作电流的影响较长距离工况的大。


2.4不同工况试验研究的改进


为了对电动汽车动力锂电池的性能进行合理的评价以及完成电池管理系统设计等应用,建立电动汽车动力锂电池特性参数数据模型是必不可少的环节。电动汽车动力锂电池特性参数数据建模与仿真研究是通过电池测试和积累动力锂电池实际运行特性数据,整合关联因素而建立的。


动力锂电池特性参数模型可描述整车工况与电池工作特性之间的数学关系,并在特定的工况下对动力锂电池运行特性进行仿真,且含有运用模型分析动力锂电池特性参数变化规律的功能,评价电池的性能指标。



钜大锂电,22年专注锂电池定制

钜大核心技术能力