低温18650 3500
无磁低温18650 2200
过针刺低温18650 2200
低温磷酸3.2V 20Ah
21年专注锂电池定制

开关电源电路设计秘笈之解决电源电路损耗问题

钜大LARGE  |  点击量:719次  |  2020年05月19日  

您是否曾详细计算过设计中的预计组件损耗,结果却发现与实验室测量结果有较大出入呢?本文介绍了一种简便方法,以帮助您消除计算结果与实际测量结果之间的差异。该方法基于泰勒级数展开式,其中规定(在赋予一定自由条件下)任何函数都可分解成一个多项式,如下所示:


假如意识到电源损耗与输出电流相关(可用输出电流替换X),那么系数项就能很好地与不同来源的电源功率损耗联系起来。例如,ao代表诸如栅极驱动、偏压电源和磁芯的固定开销损耗以及功率晶体管Coss充电与放电之类的损耗。这些损耗与输出电流无关。第二项相关联的损耗a1直接与输出电流相关,其典型表现为输出二极管损耗和开关损耗。在输出二极管中,大多数损耗是由于结电压引起的,因此损耗会随着输出电流成比例地新增。


类似地,开关损耗可通过输出电流关联项与某些固定电压的乘积近似得出。第三项很容易被识别为传导损耗。其典型表现为FET电阻、磁性布线电阻和互联电阻中的损耗。高阶项可能在计算非线性损耗(如磁芯损耗)时有用。只有在考虑前三项情况下才能得出有用结果。


计算三项系数的一种方法是测量三个工作点的损耗并成矩阵求解结果。假如损耗测量结果其中一项是在无负载的工况下得到(即所有损耗均等于第一项系数a0),那么就能简化该解决方法。随后问题简化至容易求解的两个方程式和两个未知数。一旦计算出系数,即可构建出类似于图11.1、显示三种损耗类型的损耗曲线。该曲线在消除测量结果和计算结果之间的偏差时大有用处,并且有助于确定能够提高效率的潜在区域。例如,在满负载工况下,图1中的损耗重要为传导损耗。为了提高效率,就要降低FET电阻、电感电阻和互联电阻。


实际损耗与三项式之间的相关性非常好。图11.2对同步降压稳压器的测量数据与曲线拟合数据进行了比较。我们了解,在基于求解三个联立方程组的曲线上将存在三个重合点。关于曲线的剩余部分,两个曲线之间的差异小于2%。由于工作模式(如持续或非持续)不同、脉冲跳频或变频运行等原因,其他类型的电源可能很难以如此匹配。这种方法并非绝对可靠,但是有助于电源设计人员理解实际电路损耗情况。


钜大锂电,22年专注锂电池定制

钜大核心技术能力