低温18650 3500
无磁低温18650 2200
过针刺低温18650 2200
低温磷酸3.2V 20Ah
21年专注锂电池定制

影响电池性能和寿命的因素是什么?

钜大LARGE  |  点击量:3019次  |  2020年03月23日  

锂电池产业链下游包括低端的手机、笔记本电脑、数码相机、电动工具、矿灯市场,中端的风电和太阳能储能市场,以及高端的电动自行车、电动摩托车、电动代步车、电动轮椅、电动轿车及电动客车市场,在特种航天领域也有很大用武之地,包括坦克、特种、火箭、月球车等。动力锂电池产业链下游主要是电动自行车、电动摩托车、电动轿车、电动客车等需要大功率的应用领域。


产业研究院发布的《2015-2020年中国动力锂电池行业市场需求预测与投资战略规划分析报告》认为,两大因素利好锂电池行业发展:(1)随着我国锂电池下游需求行业的快速发展,尤其是消费类电子产品,如手机、电脑、以及其它数码产品的快速增长,未来锂电池的需求将保持快速发展;(2)国家锂电池产业政策支持锂电池行业发展。并且从行业发展情况来看,呈现以下趋势:


1、聚合物锂电池市场份额逐渐扩大


目前,手机网络和终端产品的应用存在差距,手机普遍存在着互联互通和电池能量不够的问题。在传统液态锂离子电池基础上发展而来的聚合物锂电池,正好能在性能上弥补传统液态锂离子电池的缺憾。首先,由于采用铝塑复合膜软包装,相对于采用铝壳等硬壳包装的传统锂电池而言,不容易爆炸,具有更高的安全性。其次,聚合物锂电池更轻、更薄、容量更大。由于具有上述优势,聚合物锂离子电池的市场份额近年来不断扩大,并且在今后几年还将占据更大的市场份额。


2、电动车是锂电池的未来重点需求领域


纵观国内和国际各大厂商对新能源的投资动态分析,许多的汽车生产厂商和传统电池生产商已经将目光转向了锂电池的研发和生产。随着国内国际锂电池生产技术和工艺的进一步完善,锂电池在协调好了产品质量和价格这两方面因素之后,必将以轻便、安全、使用寿命长等优点进一步扩大其在市场上的使用率。


产业研究院统计数据显示,全年新能源汽车产量7.85万辆,销售7.48万辆,比上年分别增长3.5倍和3.2倍,其中纯电动汽车产销比上年分别增长2.4倍和2.1倍;插电式混合动力汽车产销比上年分别增长8.1倍和8.8倍。按照锂离子电池展动力电池20%的渗透率来计算,锂离子电池市场规模约为1.50万组,按照每组动力锂离子电池均价为5万元,市场总额约为7.48亿元。


最近连续阅读了一些资料,可以说锂电池寿命,是外部应力作用、电芯微观结构变化再到电芯外特性表现的三部曲。而一个外部特性,可能对应几种微观变化,比如内阻的增加即受到SEI膜生长的影响也受到系统内锂离子总量减少的影响;而一个微观上的变化,同样也可能带来几个不同方面的外特性的变化,比如电解质分解,既可能带来电阻的上升,也可能使得开路电压降低。外部应力的作用与微观结构的变化,同样存在类似关系。充电截止电压过高,可能造成阳极镀锂,也可能带来阴极活性材料晶格结构的变化;而阳极镀锂,可能是充电电压过高的结果,也可能是充电温度过低带来的影响。在一篇文章中,把微观和宏观结合,把外部应力和微观结构对应,把微观变化与电池外特性对应,使得影响电芯寿命的因素综合的在一页纸上呈现出来,相信可以对锂电池寿命问题形成比较全面的感受。当然,本文中的一些叙述,只代表一些研究中的当前观点。锂电池内部复杂的电化学过程,很多解释可能还算不上结论,是根据一些试验现象得出的推论,暂且把不会自相矛盾的观点综合到一起。


锂电池寿命,可以分别用日历寿命和循环寿命两个概念来考虑。其中循环寿命是指电池在工况循环或者常规循环过程中达到寿命终止所需要的时间;日历寿命是指电池在某参考温度下、开路状态达到寿命终止所需的时间,即电池在备用状态下的寿命。二者都属于常规应用。一般的,功率型电芯的寿命主要考察内阻变化,能量型电芯主要考察容量衰减情况。


而锂电池寿命的第三种情况,是不当操作,事故和滥用带来的电池寿命的短时间快速衰减。下面的内容,都糅合在一起讨论。


1从微观物理层面描述的老化原因


1.1阳极


在石墨阳极侧发生的与电池寿命相关的反应,主要包括SEI膜的形成、发展、破损和修复过程,锂单质电镀反应等。


1)SEI膜的两面,阻隔副反应和消耗锂离子


目前商业化的锂电池,无论三元,磷酸铁锂,锰酸锂等各种正极材料,配备的负极基本都是石墨材质。石墨负极与电解质不能稳定相容,在接触之初,会形成一层固态钝化膜solidelectrolyteinterface,即SEI膜,这层薄膜将电解液与石墨隔离开来,同时,薄膜上的空隙又允许锂离子的进出。同时,相对于电子导电,它又是绝缘体,不允许电子通过。可以说这样的性质非常理想了。因而SEI膜是锂电池电化学性能稳定的重要结构。


SEI膜主要的形成于电池的首次充放电过程中,并在其后的几个循环中仍然具有比寿命中其他周期里更快的生长速度。SEI主要的由锂离子与溶剂(EC/DMC)、痕量水、HF等在石墨表面形成,一层包含高分子与无机盐的多孔层。SEI膜的生长在首次充放电之后的几个循环内依然在生长。SEI的生长受到电解液的量/成分、充电电压/电流、温度等几个因素的影响。因此,每个电池厂家都会精心设计化成的充放电参数,以期待形成均匀致密的SEI层。SEI膜位置如下图所示。


在电池的日历寿命和循环寿命过程中,SEI并非静止不变的。在没有任何不当使用的情况下,SEI会逐渐生长,慢慢增加厚度,并存在一定比例的破损。破损的位置,电解液与石墨再次直接接触,重新构建新的SEI层。


SEI膜在电池老化过程中扮演着重要的角色。一方面,高质量的SEI膜是电池拥有长循环寿命的必备条件;另一方面,SEI的形成和修复的过程中,都需要锂离子作为原料,不可避免的消耗了系统中锂离子的数量;SEI的孔洞在使用过程中,由于应力作用,部分的坍塌变形,使得离子通路变得不再顺畅。这些微观上的变化,使得电池对外表现出内阻增加,容量下降,充电能力变差等寿命衰退的现象。


2)阳极镀锂


镀锂,对于锂电池来说,并非工作过程中必然需要发生的现象,现在的研究还不是特别透彻,但主流的观点认为,形成阳极镀锂的基本原因是大量锂离子在阳极堆积,无法顺利嵌入石墨层状结构,使得离子在电极表面得电子后沉积下来,形成锂单质堆积,又被称为枝晶生长。枝晶生长被认为是热失控的重要助攻因素。一方面,枝晶生长如果积聚的数量够大,可能刺穿隔膜,造成正负极短路,直接引发热失控。另一方面,锂单质是非常活泼的金属,在较低温度下就可以发生剧烈的反应。当电池出现自生热,积累过多热量造成较大温升时,锂单质可能发生剧烈反应,被认为是引发热失控的一大原因。


而可能形成大量锂离子阳极表面积聚的操作,被认为主要是充电过程中容易出现的问题,具体的说是下面三种情形:低温充电、过压充电和过大电流充电。


1.2阴极


锂离子电池中的离子,除了最初的电解液中存在一小部分以外,其最主要的来源就是阴极材料。锂离子存放在材料的晶格结构中,在充放电过程中,脱出或者嵌入。正常应用条件下,随着时间的推移,阴极材料主要的老化形式有两个。其一是晶格结构的塌陷局部材料从总体中脱落带来的活性物质总量的减少;其二是电解质与阴极材料的副反应的消耗。于是可以脱出的锂离子数量以及存放锂离子的空位的数量相应减少。如果遇到不当操作滥用,阴极材料因为种种应力作用而出现晶体的大规模破裂,则在短时间内就形成大量的活性物质损失。


上述微观上的阴极损伤,在电池外部特性上直接的表现为容量的减少;由于晶格结构的局部变化,离子进出的通路被阻断,至少是延长了离子在固体结构中扩散的路径,则电池内阻就会上升。


1.3电解质


电解质与电极材料之间并不是完美相容的,电解质与阳极石墨需要有SEI钝化膜的保护才能减少反应几率;与阴极材料之间,则时时有微量的副反应存在着,随着温度升高,反应有加剧的趋势。这些副反应都会消耗电解质,使得导电离子减少,有副反应气体产生。


外加电压过高,高于电解液能够承受的电压窗口,会加剧电解液的分解过程,分解产物同样包含可燃气体,损害电解液的导电能力。


电解质,作为电池内部锂离子正负极之间运动的通路,电解质的粘稠程度及电解质中锂离子的密度,会直接影响电荷传递的速率,对离子运动速率的不同阻碍程度。这种阻碍,对外就表现成锂电池的电阻。


2从外部特性描述的老化原因


影响电池性能和寿命的外部因素,主要包含如下几种:温度,电压,电流,充放电深度。


钜大锂电,22年专注锂电池定制

钜大核心技术能力