低温18650 3500
无磁低温18650 2200
过针刺低温18650 2200
低温磷酸3.2V 20Ah
21年专注锂电池定制

锂离子电池有哪些独特的优势?它对隔膜的要求有哪些?

钜大LARGE  |  点击量:1249次  |  2019年12月21日  

锂离子电池因其高能量密度和长循环寿命等优点而被广泛应用于移动电子设备和动力装置中,然而,特斯拉事件、三星手机事件等,频繁发生的锂离子电池安全事故逐渐引起了人们的关注。其中,电池隔膜(图2)作为锂离子电池的重要组成部分之一,可提供锂离子传输通道,并且可防止正、负极接触发生短路,对锂离子电池的安全性具有非常重要的影响。锂离子电池隔膜要满足如下几个条件:(1)具有电子绝缘性,保证正负极的机械隔离;(2)有一定的孔隙率和孔径,保证低的电阻和高的离子电导率,对锂离子有很好的透过性;(3)耐电解液腐蚀,电化学稳定性好;(4)对电解液的浸润性好并具有足够的吸液保湿能力;(5)具有足够的力学性能,包括穿刺强度、拉伸强度等;(6)空间稳定性和平整性好;(7)热稳定性能好。锂离子电池以其独特的优点迅速地占据了传统电池的市场而得到广泛的应用,移动电话、手提电脑、照相机、摄像机等电子和信息产品现在都已采用锂离子电池作为电源。但在一些高端的应用领域,如动力电池等容量较大的锂离子电池方面的应用还没有得到推广和普及。很重要的一个原因就是现有的锂离子隔膜的性能还没能满足作为高端电池隔膜的要求。高端电池对隔膜的要求:(1)高温安全性(2)高倍率充放电性能(3)高循环使用寿命。聚烯烃类隔膜在高温下能够发生闭孔,进而阻止热量进一步扩散,是现在使用最广泛的锂离子电池隔膜。当前应用最广泛的聚烯烃隔膜材料是聚乙烯(PE)和聚丙烯(PP),其在100℃以上就发生软化变形。聚烯烃类聚合物的耐热性能差,在过充过放、快速充放或高温下可能会熔化,造成短路起火,甚至爆炸。另一方面,聚烯烃隔膜还存在电解液浸润性不足的问题。为了改善聚烯烃隔膜的热稳定性和电解液浸润性,目前主要的解决方法是在聚烯烃隔膜的单面或双面涂覆耐高温涂层,或者寻找可替代聚烯烃的热稳定性好的新隔膜材料。在聚烯烃基膜上涂覆耐高温涂层,对聚烯烃隔膜进行改性是比较常见的办法,其对电池的电化学性能和热闭孔性能影响不大,却可以有效降低隔膜的热收缩,进而提高锂离子电池的安全性。市场上现在使用最多的是无机陶瓷涂覆隔膜,但是由于陶瓷纳米颗粒易发生团聚而很难均匀的涂覆在基膜上,还会造成严重的孔洞堵塞,导致离子转移电阻变大,影响锂电池的循环性能。并且,在电池组装过程中,无机陶瓷与基材结合性能差,陶瓷涂层易脱落,而通过加入普通的粘结剂增加结合力后又会使得隔膜透气性能变差,增大电池内阻。基于陶瓷涂覆膜的这些缺点,使用耐高温聚合物作为涂层材料的研究也越来越多。另一解决办法是选择耐高温的新隔膜材料来替代传统的聚烯烃材料,包括天然材料和合成材料,天然材料有纤维素及其衍生物,合成材料包括聚对苯二甲酸乙二酯(PET)、聚偏氟乙烯(PVDF)、聚偏氟乙烯-六氟丙烯(PVDF-HFP)、聚酰胺(PA)、聚酰亚胺(PI)、芳纶(间位芳纶(PMIA);对位芳纶(PPTA))等。PI是指主链上含有聚酰胺环的一类聚合物,是综合性能最佳的有机高分子材料之一。其耐高温在400℃以上,长期使用温度在200~300℃之间,无明显熔点,高绝缘性能,1000Hz下介电常数为4.0,介电损耗仅为0.004~0.007,属F至H级绝缘材料。已广泛应用在特种、航天、微电子、纳米、液晶、分离膜、激光等领域。PI因其在性能和合成方面的突出优点,不论是作为结构材料或者是作为功能性材料,其巨大的应用前景已经得到充分的认识,被称为是解决问题的能手。作为隔膜来说,PI隔膜与传统的聚烯烃隔膜相比有着众多优点:首先,其耐高温性好,能够提高锂离子电池的安全性能;其次,PI多孔膜具有较高的孔隙率,且PI具有大量的极性基团,隔膜的离子电导率高,对电解液的浸润性非常好,使得锂离子电池适合在高倍率下充放电,缩短充电时间,并且延长锂离子电池的使用寿命。因此,PI隔膜有望作为下一代锂离子电池隔膜材料。PI在锂离子电池隔膜中的应用有两种方式,一种是在基膜上涂覆PI对基膜进行改性制备涂覆隔膜,另一种是以PI作为基材隔膜。1.改性隔膜将PI涂覆在基膜上对基膜进行改性,可以提高隔膜的热稳定性能。基膜可以选择PE、PP、PP/PE/PP等聚烯烃隔膜,也可以选择苯二甲酸乙二酯(PET)、聚环氧乙烷(PEO)、聚丙烯腈(PAN)、纤维素等无纺布作为基膜。PI在基膜上涂覆的形态可以是颗粒、纤维或者多孔膜,引入的形式可以是聚酰胺酸(PAA),也可以是PI,具体要根据所使用基膜的种类来定。Jung-KiPark[1]等将P84溶解在N,N-二甲基甲酰胺溶剂中涂覆在PE基膜两侧,溶剂挥发后形成PI复合隔膜,PI在PE基膜上形成球形颗粒。复合隔膜在不影响PE隔膜电化学性能的基础上提高了隔膜的热稳定性,使隔膜能够耐140℃高温。XingxingLiang[2]等将PAA溶液静电纺丝制备PAA纳米纤维膜,然后将PAA纳米纤维膜热亚胺化制备得到PI多孔膜,再将PI多孔膜浸泡在PEO的溶液中,干燥后得到PI/PEO的复合隔膜。LiuJian[3]等人将[email protected]的溶液进行静电纺丝制备[email protected]膜,配置乙基纤维素(EC)和聚乙烯吡咯烷酮(PVP)的铸膜液,将PE膜浸泡在铸膜液中,在水中清洗掉PVP后,PE膜的两面形成EC的多孔膜,最后将[email protected]@PI膜、[email protected]膜、[email protected]膜进行热压制备得到三明治的PI复合隔膜,该复合隔膜在180℃下的热收缩为0,耐高温性很好(图3)。ChuanShi[4]等报导了他们将Al2O3纳米颗粒和PI混合制备铸膜液,涂覆在PE基膜单侧,PI可以起到粘结剂的作用,将陶瓷更好的粘结在PE膜上,且复合膜表现出良好的电解液浸润性、耐高温性和电池2.新体系隔膜PI单独作为基材用在锂电池隔膜中,最常见的是静电纺丝法制备的纳米纤维膜,相转换法或模板法制备的多孔膜,其次也有刻蚀法、烧结法等其他方法制备的PI多孔膜。LiyunCao[5]等人通过静电纺丝的方法制备得到的PI纳米纤维基无纺布能够在500℃高温下稳定使用(图3),孔隙率达到90%,对极性电解液的吸液率高,阻抗低,倍率性能好,5C充放电320圈后容量保持率为99.66%。YingWang[6]等人将PAA和SiO2制备成纺丝液,静电纺丝制备PAA/SiO2纳米纤维膜,然后热亚胺化得到PI/SiO2多孔膜,孔隙率高达90%,电解液吸收率高达2400%(普通的PP隔膜的吸液率只有169%),能耐250℃高温,表现出较好的倍率性能和循环性能。JaritphunShayapat[7]等也采用静电纺丝的方法制备了PAA/SiO2和PAA/Al2O3多孔膜。

钜大锂电,22年专注锂电池定制

钜大核心技术能力