低温18650 3500
无磁低温18650 2200
过针刺低温18650 2200
低温磷酸3.2V 20Ah
21年专注锂电池定制

关于锂电池负极取得的重要进展

钜大LARGE  |  点击量:1577次  |  2018年05月27日  

  自从上世纪90年代被大规模应用以来,锂离子电池的比容量没有显著提升,因此也越来越无法满足智能手机要求的待机时间长、电动汽车要求的跑得更远、电网调峰要求的储电量大。

  这一困境的根本原因在于锂电池的电极材料容量难以突破,比如,商用负极材料只能采用理论容量为372mAh/g的低比容量碳基材料。尽管研究表明,Si、Ge、Sn等单质作为负极具有很高的比容量,但是受限于多次使用后的容量快速衰减而难以实际应用。近年来,二氧化锡(SnO2)负极材料具有优越的循环性能而受到极大关注,其理论容量(783mAh/g)已经达到了石墨负极的两倍。

1.png

  资料图

  然而,现有SnO2和单质负极材料都在锂离子电池电化学过程中无法克服体积膨胀的应用瓶颈,循环稳定性难以满足应用需求。因此,如何开发新的高循环稳定性/高容量的SnO2基锂电负极材料具有重要意义。

  近日,北京大学化学与分子工程学院新能源材料与器件课题组与中国科学院硅酸盐研究所、美国宾夕法尼亚大学以及北京工业大学等联合研究,发明了一种基于独创制备技术的黑色二氧化锡纳米材料,该材料作为锂电负极具有1340mAh/g的可逆容量,远优于SnO2的理论容量极限(783mAh/g)。该材料与石墨烯复合后更显示出极其优越的循环稳定性和倍率性能,在0.2A/g电流密度下循环100圈之后容量不衰减,保持950mAh/g的容量;在2A/g的大电流下保持具有700mAh/g的容量。

2.png

  Figure2.ElectronimagesandelectricalconductivityofSnO2,SnO2?x,andSnO2?x:RGO.

  通过深入而细致的研究,研究者认识到独特的黑色二氧化锡新材料不同于现有的二氧化锡,具有优异电子导电性和丰富氧空位的特征,诱导出纳米活性材料的还原反应具有各向同性,从而形成了一个热力学高度稳定的Sn和Li2O均匀分散的微观复合纳米结构,最终解决了循环过程中金属Sn团聚的科学难题。研究人员惊喜地发现,这个特殊的微观复合纳米结构可以保证金属锡在储能电化学反应中完全可逆氧化为二氧化锡(图),这个现象和机理尚未见文献报道。基于新的储电机理,二氧化锡负极材料的理论容量从原来的783mAh/g提高到新机理的1494mAh/g。研究者发明的黑色二氧化锡为设计和合成其它新型电负极材料提供了一种新的思路,同时也极具高容量锂电负极材料的产业应用价值。

3.png

  高导电黑色二氧化锡电极反应示意图、电池循环性能示意图以及循环后二氧化锡颗粒元素分布图

  该研究成果以“ARobustandConductiveBlackTinOxideNanostructureMakesEfficientLithium-IonBatteriesPossible”为题发表于2017年4月21日的国际顶级材料科学期刊AdvancedMaterials上(DOI:10.1002/adma.201700136),北京大学化学与分子工程学院研究生董武杰、王超以及中国科学院硅酸盐研究所研究生徐吉健为共同第一作者,黄富强教授为通讯作者。该项目得到国家重点基础研究发展计划、国家自然科学基金委员会、上海市科学技术委员会和中国科学院主要研究项目的支持。

钜大锂电,22年专注锂电池定制

钜大核心技术能力