低温18650 3500
无磁低温18650 2200
过针刺低温18650 2200
低温磷酸3.2V 20Ah
21年专注锂电池定制

如何解决锂离子电池组的电化学的均衡问题?

钜大LARGE  |  点击量:1577次  |  2018年05月13日  

  电池组一般都是由数百只或者数千只的电池单体组合而成,所以电池组的容量也受到了单体电池的影响,研究显示即便是单体电池循环寿命达到1000次以上,组成电池组后,电池组的寿命可能不足200次。这就说明了电池组的均衡是非常重要的。


  长期以来锂离子电池单体一致性差是困扰着锂离子电池组设计难题,这里我们所说的一致性不仅仅是指传统意义上的容量、电压等参数,还包括了单体电池的容量衰降速度、内阻衰降速度和电池组的温度分布等因素。


  理想情况下,同一批次的锂离子电池应该具有相同的电化学性能,但是实际上由于制造过程中的误差,会使锂离子单体电池之间存在不一致性。电池组往往由数百只,甚至是数千只单体电池通过串并联而成,因此电池组的容量受到单体电池的不一致性影响很大(对电池组性能影响最大的不一致性因素包括库伦效率的不一致、自放电率的不一致、内阻增加速度的不一致等),研究显示即便是单体电池循环寿命达到1000次以上,组成电池组后,电池组的寿命可能不足200次。

1.jpg

  因此对于一个由数量众多的单体电池组成的电池组而言均衡设备是必须的,目前上市面上常见的均衡方法主要是借助电子设备实现单体电池之间的电压均衡,因此技术上也都大同小异。近日德国斯图加特大学的AlexanderU.Schmid等人利用Ni金属氢化物电池(NiMH)和Ni-Zn电池实现了电池组的电化学均衡,为电池组的均衡提供了一个新的思路。


  由于锂离子电池工作原理的限制,其抗过充的能力很弱,在过充情况下可能产生电解液分解、析锂等问题。NiMH电池在发生过充的情况下,电解液中的H2O会在正负极分解产生的O2和H2,而O2和H2能够在催化剂的作用下重新结合生成水,从而形成一个完整的循环。在C/3-C/10的小倍率下,气体产生的速率几乎与其再结合的速率相同,因此NiMH电池的抗过充性能非常好。基于上述原理,AlexanderU.Schmid将NiMH电池和类似的Ni-Zn电池用来对锂离子电池组进行均衡。在使用这种电化学均衡手段时,传统的电压监测和电子均衡单元都可以省略,有效降低了电池组管理的复杂程度,提高电池组的可靠性。


  AlexanderU.Schmid选取了LiFePO4和Li4TI5O12材料作为实验对象,原因是这两种材料对过充都具有一定的耐受能力,并且在完全脱锂后电压会快速上升,此时NiMH和Ni-Zn电池承担起电流Bypass的作用,多余的电流会流入到NiMH和Ni-Zn电池之中,从而避免锂离子电池发生过充。


  其工作原理如下图所示,用于均衡的NiMH电池或者Ni-Zn电池通过并联的方式与锂离子电池连接在一起,当电池组中的一组串联低容量电池充满电后,电压达到阀值,此时与之并联的NiMH电池承担起了分流的作用,所有的电流基本上都流过NiMH电池,不再流过锂离子电池,从而避免了锂离子电池发生过充。在这个过程中锂离子电池和NiMH电压和电流的变化如下图b所示,在完美匹配的情况下,锂离子电池电流如红色曲线所示。

2.jpg

  AlexanderU.Schmid的工作为电池组均衡提供了一个新的思路,NiMH、NiZn电池由于设计特点,因此在发生过充时,电解液中的水会分别在正负极发生分解,产生O2和H2,在电池内催化剂的作用下,O2会与H2结合产生水,完成一个循环,因此NiMH和NiZn具有非常好的抗过充性能,我们恰好可以利用这一点,通过单个或者几个串联的NiMH、NiZn电池与锂离子电池并联,在充电电压达到上限时,电流几乎会全部流过NiMH、NiZn电池,从而避免锂离子电池过充。我们同样可以利用这一点实现对锂离子电池组的均衡,我们只要持续对电池组进行充电,就能保证所有的电池都能完全充电,而不担心会有的电池发生过充,从而提高电池组内容量的一致性,实验也证实一个充放电循环就能实现8%的容量均衡(LFP/C-2NiZn)。该方法最大的优势在于,整个过程中不需要对电池组中的单体电池进行电压监控,完全是自动完成的,因此极大的简化了电池组的结构,提高了电池组的可靠性。

钜大锂电,22年专注锂电池定制

钜大核心技术能力