专业定制医疗锂电池
18年专注锂电池定制
机器人电池定制
低温锂电池

简述燃料电池关键材料与进展

钜大LARGE  |  点击量:951次  |  2018年11月26日  

摘要
离子交换膜是燃料电池的重要部件,肩负着在电池内部传递离子,形成完整电池回路的作用。按照传导离子的种类,可以将其分为阳离子交换膜和阴离子交换膜,分别应用于质子交换膜燃料电池和碱性阴离子交换膜燃料电池中。

离子交换膜是燃料电池的重要部件,肩负着在电池内部传递离子,形成完整电池回路的作用。按照传导离子的种类,可以将其分为阳离子交换膜和阴离子交换膜,分别应用于质子交换膜燃料电池和碱性阴离子交换膜燃料电池中。

本文阐述了这2类电池的研究进展和应用,提出了存在的主要问题,并着重介绍了常见阴离子交换膜及其合成方法和降解机理,对研究前景提出展望。

21世纪,能源与环境问题备受关注。传统的化石能源如石油等资源日渐枯竭,全球人类面临着能源危机;与此同时,其燃烧过程中会产生大量气体和其他污染物,这对环境及气候产生了破坏作用。正是由于能源资源的过度开发,以及大规模消耗,使得国际上对清洁和高效能源的需求不断增长。寻求一种可重复利用,对环境友好且能源转换效率高的新能源技术是急需解决的问题,新能源产业的研究也得到了各国政府大量的政策性扶持和财政支出。

燃料电池被认为是最有前景的环保电源和常规化石燃料的替代品,而且是在使用H2及CH3OH、CH3CH2OH等可再生能源方面重要的选择。作为一种具有巨大潜力的新能源,燃料电池是一种高效、清洁的发电装置,可以不断地通过外界输入燃料,将化学能直接转化成电能并持续向外供电,它还可以缓解能源危机、缓解电力建设、减小环境污染,并且是电力市场发展和国防安全等供电保障的需要,因此,有必要发展其应用。

19世纪英国法官和科学家威廉·罗伯特·格罗夫的工作是燃料电池的起源,格罗夫进行的电解实验被人们称为燃枓电池的第一个装置。中国的燃料电池研究始于1958年,MCFC的研究最早开始于原电子工业部天津电源研究所。20世纪70年代,燃料电池在中国的研究曾在航天事业的推动下出现出第一次高潮,然而由于各种原因,许多研究在20世纪70年代末就止步不前了,这成为中国的燃料电池技术与世界先进水平差距较大的直接因素。20世纪90年代初,迅速发展起来的民用燃料电池,推动了中国燃料电池的研究发展。

1燃料电池

燃料电池是一种不断输入燃料进行化学反应,将化学能直接转化为电能的装置,燃料通常为甲醇、乙醇、纯氢气、天然气及汽油等。

离子交换膜燃料电池中,以氢氧为燃料的电池最常见,通过特殊催化剂使燃料与氧发生反应产生二氧化碳和水。这一过程的燃料廉价,化学反应不存在危险,二氧化碳排放量比一般方法低很多,生成的产物水无害,是一种低污染性的能源,这是现今其他动力来源望尘莫及的。目前,计算机和汽车企业开始着力于开发燃料电池以替代传统的电池电源,汽车领域中燃料电池的应用,已成为能源发展的必然趋势。

燃料电池关键材料与进展

图1燃料电池工作原理示意

作为一种能量转化装置,燃料电池是按照原电池工作原理,直接将燃料和氧化剂中储存的化学能转化为电能,其反应实质是氧化还原反应,工作原理如图1所示。

燃料电池主要由阳极、阴极、电解质和外部电路4部分组成,其阳极和阴极分别通入燃料气和氧气(空气),阳极上燃料气放出电子,外电路传导电子到阴极并与氧化气结合生成离子,在电场作用下,离子通过电解质转移到阳极上再与燃料气进行反应,最后形成回路产生电。与此同时,因为燃料自身的反应及电池存在的内阻,燃料电池也要排出一定的热量,以保持电池恒定的工作温度。从外表上看像一个蓄电池,但实质上它不能「储电」而是一个「发电厂」。

其中,阴阳极不仅可以传导电子,还能作为氧化还原反应的催化剂。为便于反应气体的通入和产物的排出,两极往往采用多孔结构。电解质则主要起到传递离子和分离燃料气、氧化气的作用,一般情况下为致密结构。

燃料电池作为一个转换装置,仅仅是将存储于燃料物质中的化学能转换成电能。从原则上讲,只要接连不断地供给化学燃料,燃料电池就可以持续不断的发电,这是继核电、水力、火力之后的第4代发电技术。

燃料电池成为国内外企业的关注热点,这主要是源于它自身的优点:

能量转化效率高;

燃料选择范围广;

清洁、污染少;

噪声低;

比能量高、可靠性强;

负荷响应快,具有超强的适用能力。

尽管燃料电池拥有如此多吸引人的优势,可它在运行推广过程中仍然有一些不足,主要存在的问题是:

成本较高;

功率密度仍需提高;

燃料的存储;

对于环境毒性比较敏感;

有限的工作温度兼容性。

目前,应用得较多是质子交换膜燃料电池和碱性燃料电池。质子交换膜燃料电池(PEMFC)是近些年快速发展起来的新一代燃料电池,具有较高的能量效率和能量密度、体积重量小、启动速度最快、运行安全可靠、应用最为广泛等优点,特别是在汽车方面应用较为深广,PEMFC是正在开发的商用燃料电池。

而最早参与实际应用的燃料电池是碱性燃料电池(AFC),在Apollo飞船中应用的AFC不仅为飞船提供了动力,还为宇航员提供了饮用水。其电解质主要是氢氧化钾/氢氧化钠水溶液,可以使用较为廉价的催化剂如铁、镍、银及一些金属氧化物代替贵金属催化剂(铂等),因此材料成本较低。

2质子交换膜燃料电池

2.1质子交换膜燃料电池工作原理

从本质上说,PEMFC是电解水的一个「逆」装置。电解水过程是利用外加电源使水发生电解,从而产生氢和氧;然而,燃料电池则是氢和氧发生电化学反应产生水,同时生产出电的过程。所以燃料电池的结构特征与电解水装置是如出一辙的,它主要由阳极、阴极、电解质和外部电路组成。

PEMFC中阳极为氢电极,阴极为氧电极,阴阳极都含有一定量用来加速电极上发生电化学反应的催化剂,两极之间以质子交换膜作为电解质。

2.2PEMFC关键部件

质子交换膜的关键部件:质子交换膜(CEM)、电催化剂和双极板。

1)质子交换膜

PEMFC以CEM为电解质,作为其核心部件,CEM需具备好的稳定性、优异的抗电化学氧化性、高的机械性能和电导率等特征,应用较多的就是杜邦公司生产的商业化全氟磺酸膜(Nafion膜)。多种聚合物材料包括聚醚砜(PES)、聚醚酮(PEK)、聚苯并咪唑(PBI)、聚酰亚胺(PI)、聚亚苯基,聚对苯二甲酸乙二醇酯、聚磷腈和聚偏二氟乙烯(PVDF)可作为CEM的主链。此外,已证实聚合物离聚物结构的变化明显影响着CEM的总体性能。许多文献报道过主链CEM,嵌段CEM,侧链型CEM,梳型CEM和致密官能化CEM。

增强CEM的阳离子电导率的最有效方法之一是在膜基质中构建相互连接的阳离子导电通道。官能化链段和未官能化链段之间的亲水/疏水区分导致纳米级的相分离。CEM最初是从主链结构开发的,其中阳离子基团直接连接到没有间隔基的聚合物主链上。这种类型的CEM主要通过化学稳定的主链的后磺化或磺化单体的共聚制备。聚缩合是通过亲核机制实现芳族CEM的共聚反应,除了亲核机制,徐铜文等[10]探索了通过亲电机制的一条简易路线,以获得磺化聚合物。将二芳烃单体和二羧酸酸性单体在温和条件下的聚酰化,通过一步醚化以高产率合成磺化芳族PEK。此外,通过提供另一种3,3',4,4'-四氨基单体,PEK/PBI的共聚物可以通过聚酰化反应在一锅中合成[11]。

嵌段聚合物CEM可以分为2类:(1)典型的嵌段聚合物由具有不同组成的2个或3个链段组成;(2)少数亲水和疏水链段交替排列以构建多嵌段聚合物。前者可以通过由大分子引发剂引发的苯乙烯的原子转移自由基聚合(ATRP)制备[12],也可以通过芳族单体的可控缩聚实现。李南文课题组首先报道了通过利用封端在聚亚芳基醚砜(PAES)上的单酚盐封端的聚苯基氧化物(PPO)低聚物制备芳族ABS三嵌段共聚物[13]。

受Nafion膜结构的启发,制备侧链型CEMs以改善磺酸基团的移动性,其对于构建明确的相分离微观形态是至关重要的。在聚合物主链上引入侧链的常规方法是使酚基与1,3-丙磺酸内酯,1,4-丁烷磺内酯或6-溴己基磺酸钠反应。徐铜文等[14]报道了侧链型预磺化单体通过聚酰化反应的聚合。

促进微相分离的另一种有效方法是将具有致密聚集的阳离子基团的各种单体引入聚合物主链。另外,CEM需要足够的机械和尺寸稳定性。交联则是改善这些性能的最佳策略,交联CEM可以通过加热容易地实现。磺酸基团可以在高温100℃下与芳族化合物的活化氢原子的缩合反应。此外,磺酸基团与苯并咪唑环[15]、咪唑环[16]、吡啶鎓环[17]的酸碱交联也可有助于改善CEM的机械性能和尺寸稳定性。

2)电催化剂

由于PEMFC在强酸性环境中工作,Pt具有良好的离解吸附分子能力,但由于使用铂系作为催化剂,限制了它的应用。电催化剂作为PEMFC的关键材料,必须满足以下特征:优良的催化性能、电化学稳定性、导电性,这使得催化剂严重依赖Pt基贵金属。由于Pt价格昂贵、资源匮乏,降低Pt基催化剂的负载量、探索非铂催化剂就成为新的研究重点。

金属Pd被视为最有前景的铂替代金属[18],但Pd基催化剂的催化活性远比不上铂基催化剂,仍然无法达到商业化的使用要求。Xu等[19]通过调节其表面结构和制备Pd合金,合成了含多种活性组分的高分散钯基合金催化剂,并在催化氧还原反应(ORR)中显示了可与铂基催化剂相媲美的效果。

非贵金属催化剂主要包括金属-氮-碳催化剂、过渡金属氧化物、硫属化合物、金属氧氮化合物和金属碳氮化合物。因过渡金属-氮-碳化合物(M/N/C)具有可观的ORR催化活性(在酸性介质中)、抗甲醇、低成本、寿命长和环境友好等特点,被认为是最具潜力代替铂基催化剂的非贵金属燃料电池催化剂之一[20]。

非金属催化剂主要是由各种杂原子掺杂的纳米碳材料,包括硼掺杂、氮掺杂、磷掺杂、硫掺杂以及多原子的双掺杂或三掺杂。丁炜等[21]利用蒙脱土作为扁平纳米反应器选择性制备平面氮掺杂的石墨烯,可有效地提高催化活性位的密度,增加反应界面。但是由于缺少传质通道,在制备成膜电极(MEA)后其活性位暴露的概率大大降低,影响了电池的性能。于是在此基础上,又进一步开发了一种基于形态控制转换纳米聚合物制备高效氧还原碳纳米材料催化剂的方法——「NaCl重结晶固型热解法」[22]。

3)双极板

双极板主要起到支撑、阻气、集流和导电作用。广泛应用的双极板有:石墨板、金属板和复合双极板。

2.3PEMFC发展中存在的问题

PEMFC在发展过程中存在以下几类问题:

成本问题:PEMFC的成本问题是多方面引起的,首先,由于其工作条件是强酸性环境,必须使用昂贵的Pt作为催化剂;其次,现今使用较多的电解质膜是性能好的商业Nafion膜,这就极大提高了PEMFC的生产成本。

氢源问题:PEMFC最理想的燃料是纯氢,但氢气是最轻的气体,其储存和运输不易。

寿命问题:目前很多实验室研究PEMFC发现可达10000h,而实际应用到汽车上时,其寿命直线缩减,使用寿命有待提高。

3碱性燃料电池

3.1碱性燃料电池

碱性燃料电池(AFC)和质子交换膜燃料电池的组件及其工作原理类似,总反应也一致,因是在碱性工作条件下进行,反应机理略有不同,其阴阳极的反应如下:

相比PEMFC,AFC有以下优点:

在阴离交换膜燃料电池中,离子与燃料的传导方向相反,这有利于降低电池中燃料的渗透;

氧化还原反应在碱性环境下的反应动力学过程较快,因此可以使用较为廉价的催化剂如铁、镍等代替贵金属催化剂(铂等),降低燃料电池生产和运行成本;

碱性环境下较快的动力学过程使得甲醇、乙醇等可作为燃料使用;

碱性环境对金属催化剂的腐蚀性比酸性环境小,可以延长燃料电池电堆的使用寿命。

点击阅读更多 v
立即咨询
钜大精选

钜大核心技术能力