低温18650 3500
无磁低温18650 2200
过针刺低温18650 2200
低温磷酸3.2V 20Ah
21年专注锂电池定制

锂离子电池新型负极材料开发进展

钜大LARGE  |  点击量:1824次  |  2018年10月19日  

锂离子二次电池具有储能密度大、开路电压高、自放电率低、循环寿命长、安全性好等优点,被广泛应用于移动电子设备、航天特种设备等领域。目前商品化锂离子电池依然采用的是天然石墨、人造石墨等碳基负极材料,石墨负极材料具有可逆容量大、结构稳定、导电性好等优点,但是其电位与金属锂电位接近,电池过充可能会在电极表面析出而形成锂枝晶,从而刺穿隔膜引起短路,具有较大安全隐患,在实用中碳材料可逆比容量已经达到350mAh/g,接近理论比容量的372mAh/g。随着科学技术发展的日新月异,居民环保意识的加强,电子设备和新能源汽车进入快速发展阶段,对锂离子电池的容量、能量密度和使用寿命都提出了越来越高的要求。

碳基负极材料成为制约新能源发展的一个问题,大量研究者开始关注具有高理论比容量、高安全性能的替代性负极材料。就目前而言,新型负极材料主要有锡基材料、硅基材料和钛酸锂材料等几类,本文从改性方法方面介绍了这些材料的研究现状和存在的问题,展望了发展趋势。

1锡基材料

锡基材料价格便宜,导电性好,无毒副作用,加工性能好,Sn和Li可以形成储锂量很高的Li22Sn4,理论比容量可以达到994mAh/g,因此作为锂离子电池负极材料具有巨大潜力,一经提出就受到了广大研究者的关注。应用于锂离子电池的锡基负极材料主要有锡、锡基氧化物及其合金。

但是锡基材料作为电极材料在嵌锂/脱锂过程中体积膨胀率高,经过十几次循环就会因为体积变化造成电极材料粉化脱落,电池容量大幅下降,严重阻碍了其商业化应用。如何抑制锡基材料在充放电过程中的体积膨胀,提高电极电化学活性和充放电过程中的稳定性,是锡基材料应用的关键。在锡基材料改性方法多种多样,但总体研究思路可以分为以下几类:①多孔化改性;②掺杂金属材料;③非金属掺杂改性。

1.1多孔化改性

对材料进行多孔化改性,或者采用具有多孔性的材料作为基底,利用材料之间的空隙缓冲充放电过程中的体积膨胀,从而达到提高循环性能的目的。

樊晓勇等以多孔泡沫铜为基底,通过电沉积方法制备锂离子电池Cu6Sn5合金负极材料,初始放电比容量620mAh/g,充电比容量560mAh/g,库伦效率达到90.3%,经过50周充放电循环没有明显脱落现象。为了延缓锡基负极材料在充放电过程中粉化问题,Lei等采用复合电沉积的方式,以铜箔为基底先电沉积Cu-CNTs复合镀层,然后在电沉积Sn-CNTs复合镀层制备了Sn-CNTs/Cu-CNTs复合电极材料,并对其进行了热处理制备。研究表明,经过200℃下6h热处理的Sn-Cu-CNTs,在1C倍率下,充放电100次循环后容量为584.4mAh/g,且具有优异的倍率性能,20C充放电时容量可以达到434.6mAh/g。

材料的多孔化改性,主要是在充放电过程中提供了体积膨胀的空间,维持了材料整体框架的稳定性,但是活性物质嵌锂脱锂过程中逐渐粉化脱落,这也是经过一定较为稳定的循环后,材料容量依然会大幅下降的原因。

1.2金属掺杂改性

掺杂柔软不活泼的金属材料,如Cu、Zn、Ni、Mg等,利用非活泼金属的延展性缓释充放电过程中的体积膨胀;黄钊文等采用组分改性与结构改性的研究方法,优化合成具有核壳结构的Sn-Cu合金负极材料,结果表明,掺入Cu能在一定程度上改善Sn的循环稳定性,核壳结构能将Sn-Cu合金的体积效应控制在“囚笼”式结构内,有利于材料容量的发挥及循环稳定性的提升。

采用球形改性天然石墨作为内核的样品首次放电比容量接近800mAh/g,充电比容量超过500mAh/g,100周循环容量保持率>85%。非活泼金属的延展性改善了材料的机械强度,但是并没有从根本上解决嵌锂/脱锂过程中的体积膨胀问题,也因此材料在经过一定充放电循环后,依然有较大的容量衰减。

1.3非金属复合改性

在锡基材料上复合具有结构稳定、导电性高的高分子导电材料,如聚苯胺聚吡咯、聚乙炔,可以提高材料的电化学性能,同时可以缓冲材料在嵌锂/脱锂过程中的体积变化。

王梦亚采用表面溶胶凝胶法制备二氧化锡凝胶膜,然后与天然纤维素物质复合材料在空气气氛中煅烧得到二氧化锡纳米管材料,随后通过原位聚合法在二氧化锡纳米管材料表面均匀地包覆一层厚度20nm的聚吡咯。所制备的聚吡咯包覆二氧化锡纳米管材料,首次库伦效率61.8%,循环120圈后比容量为680mAh/g。良好的循环稳定性主要得益于天然纤维素物质独特的三维层状网络结构和其多孔性状,以及表面包覆的聚吡咯缓冲了电极材料嵌锂/脱锂过程中产生的机械张力,使得电极材料结构在充放电过程中保持稳定。复合导电高分子材料的锡基材料,能够缓冲嵌锂/脱锂过程中的体积变化,维持材料的结构稳定性,但是体积变化是不可避免的,在充放电循环初期,依然有一定的容量衰减,经过一定循环后,导电高分子材料的缓冲作用才显现出来。

2硅基材料

硅具有4200mAh/g的超高理论容量,是目前已知具有最高理论比容量的负极材料,同时硅储量丰富,价格低廉,因而被视为最具开发价值的新型负极材料。但是硅在嵌锂脱锂过程中体积变化率达300%以上,致使硅材料循环性能很差且具有很大的不可逆容量。加上硅本身是半导体材料,必须提高其导电性能才能应用于电池中。硅基材料的改性方法很多,常见的有纳米化、多孔结构化和复合化等。

2.1纳米化改性

研究者制备了形态各异的纳米硅材料,文献中报道的纳米结构硅材料有:纳米颗粒、纳米线、纳米管等,这些纳米硅材料具有比表面积大的特点,能够提供快速的锂离子传输通道,且具有一定的孔隙,可以在一定程度上承受锂离子嵌入/脱嵌带来的体积变化。李伟伟等采用溶剂挥发诱导自组装合成法,合成了硅/碳纳米管/有序解控碳复合材料,首次放电比容量高达1653mAh/g,首次库伦效率为70.1%,经过50次充放电循环可逆容量为918mAh/g,表现出来良好的循环性能和倍率性能。

钜大锂电,22年专注锂电池定制

钜大核心技术能力