低温18650 3500
无磁低温18650 2200
过针刺低温18650 2200
低温磷酸3.2V 20Ah
21年专注锂电池定制

力神万向磷酸铁锂谋转型 三元锂电池霸道成主流

钜大LARGE  |  点击量:2441次  |  2018年09月11日  

2014年第二届中国(成都)锂电新能源产业国际高峰论坛(ABEC2014,锂电“达沃斯”)召开在即,参会企业美国波士顿电池副总经理/营销总经理詹天佑在接受媒体专访时说,在我国锂电池特别是动力锂电池市场爆发式增长的当下,锂电“达沃斯”的召开,为全行业带来了一次头脑风暴思想上的启迪,促进了行业向良性发展。

詹天佑分析说,2012-2014年上半年,国内动力锂电池相关产业投资规模已超过500亿元人民币,预计到2017年将超过800亿元。根据目前的投资情况估计,2014年我国动力锂电池的设计产能将扩大至2000MWh。全球市场上,特斯拉投资50亿美元联合松下建设超级电池工厂(Giga-factory)以及丰田汽车联合松下电器合资新建电池工厂等事件显示出整车厂商乃至整个汽车行业对于动力锂电的重视。国内市场上,各方势力纷纷投入大量资金以求在快速增长的动力锂电市场中抢占更大的市场份额。三星SDI和LG化学等国际巨头纷纷追加数亿美元投资增设锂电工厂争夺市场;比亚迪、天津力神和深圳比克等市场先行者逐步突破国外技术垄断,实现国产动力锂电的生产;而万向钱潮和瑞恒集团等也利用其资本优势通过收购或联合投资快速切入这一领域。动力锂电市场的快速增长吸引了越来越多的企业投入这一领域,行业内企业数也从2008年的10家增长2014年的110余家。

“现在产能不足,供不应求,未来的半年至一年后,产能平衡。”这是詹天佑得出的判断。他认为,国内对电动汽车的需求在中央及地方政府相关政策频出的推动下,也实现了快速的增长。2014年上半年,我国共生产电动汽车20692辆,销售20477辆,比2013年同期分别增长2.3倍及2.2倍。其中,纯电动汽车生产及销售数据分别为12185辆及11777辆,插电式混合动力汽车产销数据分别为8507辆及8700辆。按照纯电动汽车平均电池容量30KWh、插电式混合动力汽车平均电池容量10KWh计算,上半年我国动力锂电的需求量超过450MWh,全年将有望超过1200MWh。

“造成国内动力锂电实际产能低于设计产能的原因,主要是如下几点:第一,动力电池生产周期比较长,从原材料选择到成品出厂测试,都需要一定的时间,国内许多企业从2012年下半年方才开始投资动力电池,技术及生产能力尚未成熟;第二,国内电动汽车企业在产能设计之初考虑到国内市场需要较长时间培育,因此多数企业仅有一条生产线处于生产状态,其余生产线将会在未来几年内陆续投产。”詹天佑分析说。

如果用三个关键词来总结2014年中国动力锂电池的发展,詹天佑给出了“持续提升、传统转型、理论及实验室创新”的答案。

他认为,全行业都处在全面提升技术和品质阶段,以解决电池技术瓶颈带来的电动汽车‘里程焦虑’的问题;市场有个转型的趋势,磷酸铁锂电池转型,如ATL、力神、万向等都在有转向三元材料的趋势;电动车最大的世界性难题是电池管理系统问题,在这方面,我们国家的企业都开始普遍在重视和提升自己的研发能力,不断的创新。

“从产业的角度,未来5至10年,三元锂电池是世界主流。”詹天佑十分肯定地说。

三元正极材料获突破或打破磷酸铁锂优势?

国家专利局最新信息显示,国内厂商研发的《三元正极材料前驱体的制备方法》日前获得国家发明专利。

该发明能使镍钴锰氢氧化物三元前驱体化学组成均匀,克服现有三元正极材料粒度分布宽、化学组成偏析的缺陷,该三元正极材料前驱体适用于汽车动力电池、锂离子二次电池。正极材料领域的新专利有望改变国内动力电池领域磷酸铁锂独大的局面。

目前在动力电池正极材料产业领域,中、日、韩、美动力电池企业采用不同的材料体系。中国企业以磷酸铁锂为主,日韩企业以锰酸锂和三元为主,新能源汽车龙头特斯拉,采用的电池正是三元正极材料。

无论国内还是海外新能源汽车的发展,均会对国内部分锂电池材料带来巨大的需求弹性,出货量增长将抵消价格下降带来的影响,价稳量升有望带来业绩的增长。

正极材料方面,目前已经量产的锂离子动力电池正极材料包括锰酸锂、磷酸铁锂和三元材料等产品。但三元材料、磷酸铁锂的核心技术专利仍然牢牢被海外企业把控。由于海外已形成的专利保护壁垒,导致国内很多材料生产商很难进入国际大厂,通过改变添加剂以及生产工艺等手段成为我国正极材料企业的常用手段。

三元材料综合了钴酸锂、镍酸锂和锰酸锂三类材料的优点,存在三元协同效应,并且在价格上有所优势。同时在循环稳定性、热稳定性和安全性能上也有提高。在新能源汽车对动力电池能量密度提升的背景下,三元材料作为高容量密度正极材料有望进一步拓展其市场份额。据统计,2014年第一季度中,三元材料增速位于正极材料之首,业内人士预测,2014年三元材料在正极材料中占比将提升至45%。

国内企业中,杉杉股份的正极材料目前产能1.2万吨,其中供应小型电动工具的三元材料已经占比30%,子公司湖南杉杉年产1.5万吨正极材料生产基地正在积极推进。赣锋锂业的电池级金属锂供应给全球最大的锂亚电池生产商和锂铁电池生产商,公司已经开始为韩国的NCA厂商提供原材料,并计划投产三元前驱体生产线。公司的高纯氟化锂在国内市占率达到50%以上。红星发展主营为电子磁性材料等产品,正逐步转型向电池原材料供应,此次在三元材料方面实现新技术的突破,公司有望借助大股东青岛红星化工集团的实力,实现从基础化工向动力电池正极材料的产业升级。

比亚迪电动车磷酸铁锂电池优势解读

新能源汽车分析之磷酸铁锂

本期笔者主要讨论电动汽车的心脏—电池。

为什么说电池是电动汽车的心脏?这要先从电动汽车的历史说起。一说起电动新能源车,很容易将其归纳为一个全新的技术以及事物。其实,电动车的历史远比想象的早,甚至早于燃油汽车。美国人托马斯·达文波特于1834年制造出第一辆直流电机驱动的电动车;1838年苏格兰人罗伯特·戴维森发明了电驱动的火车;时至今日依然使用的有轨电车是1840年在英国出现的专利。世界上第一辆电动汽车于1881年诞生,发明人为法国工程师古斯塔夫?特鲁夫,这是一辆用铅酸电池为动力的三轮车。之后就出现了以铅酸电池、镍镉电池、镍氢电池、锂离子电池等燃料电池作为电力。

可以看到,虽然电动汽车早于燃油车发展,并在早期取得了一定的规模,但在近代,由于燃油汽车的大力发展,使电动汽车在竞争中受挫。但真正的问题是,过去以铅酸电池为主的电动车,受制于铅酸电池的密度、寿命、功率等多方面限制,一直没有办法在动力源,也就是电池方面取得突破,以至于使电动汽车发展陷入停滞。

锂电池的分类及优缺点

这一问题直到锂电池的出现且经20年大力发展才得以逐步改善解决。

锂电池通常分两大类:

锂金属电池:锂金属电池一般是使用二氧化锰为正极材料、金属锂或其合金金属为负极材料、使用非水电解质溶液的电池。

锂离子电池:锂离子电池一般是使用锂合金金属氧化物为正极材料、石墨为负极材料、使用非水电解质的电池。

虽然锂金属电池的能量密度高,理论上能达到3860瓦/公斤。但是由于其性质不够稳定而且不能充电,所以无法作为反复使用的动力电池。而锂离子电池由于具有反复充电的能力,被作为主要的动力电池发展。但因为其配合不同的元素,组成的正极材料在各方面性能差异很大,导致业内对正极材料路线的纷争加大。

通常我们说得最多的动力电池主要有磷酸铁锂电池、锰酸锂电池钴酸锂电池以及三元锂电池(三元镍钴锰)。

以上各类电池都有优缺点,大致归纳为:

磷酸铁锂:

优点:寿命长、充放电倍率大、安全性好、高温性好、元素无害、成本低。

缺点:能量密度低、振实密度低(体积密度)。

三元锂:

优点:能量密度高、振实密度高。

缺点:安全性差、耐高温性差、寿命差、大功率放电差、元素有毒(三元锂电池大功率充放电后温度急剧升高,高温后释放氧气极容易燃烧)。

锰酸锂:

优点:振实密度高、成本低。

缺点:耐高温性差,锰酸锂长时间使用后温度急剧升高,电池寿命衰减严重(比如日产电动车LEAF)。

钴酸锂:

通常用于3C产品,安全性极差,不适合做动力电池。

理论上,我们需要的电池应该是能量密度高、体积密度高、安全性好、耐高温低温、循环寿命长、无毒无害、可大功率充放电,聚所有优点为一体而且低成本。但目前并不存在这样的电池,那么在不同种类电池的优缺点中就需要取舍。而且,不同的电动车对电池的需求点也是不同的,因此只有立足于长远地对电动汽车作出判断,才能有利于我们正确地判断电池路线的选择。

磷酸铁锂电池的优越性

这里就需要回溯前两篇的论述,我们分析了未来的电动汽车应该以小里程、快充电的电动汽车为主。而目前家用车需要长续航的双模混合动力,以及公交市场的大续航纯电汽车。那么这样的车需要什么样的电池?

一、安全

首先安全是汽车必备的前提。汽车不同于手机和电脑,汽车在高速行驶中有可能遇到众多不可预知因素,比如车祸造成的电池挤压和撞击。而任何一个不利的因素,都有可能造车车毁人亡。我们可以看到一些老年代步车使用劣质的铅酸电池,完全没有安全保障,电池自燃、受撞击燃烧的案例比比皆是。再比如特斯拉近一年的连续着火事件,虽然得利于特斯拉的安全设计并没有出现人员伤亡。但同时也要看到,这几次事件都是非常轻微的碰撞事故,碰撞本身对车和人并无伤害,而电池却着火了,那么如果是更严重的事故呢?

二、高倍率放电寿命

普通汽车使用寿命长达数十年,一辆电动汽车的电池,10年至少需要3000次的循环寿命。电池作为比较贵的部件,寿命能否与车等同是非常重要的,既要保证车辆的性能又要保证车主的利益,这样才能利于市场的推动。目前世界各车企的电动汽车,只有去年上市的比亚迪“秦”做到了电芯终生质保。

电池的寿命也就是循环寿命,并非简单的电池参数给出的数字。电池的循环寿命和电池的循环状态是息息相关的,比如放电倍率、充电倍率、温度等。通常电池实验室数据得出的循环寿命,是以0.3C恒定的充放电倍率,在20度恒定最佳温度下得到的。但是在实际用车过程中,倍率和温度都是非恒定的。这也就是为什么通常无论是笔记本、手机,还是电瓶车的电池,实际使用中的寿命都远远不如厂商给出的数据的原因。而中小里程纯电以及长续航双模混合动力车,因为所带的电池比较少,对其放电的要求就会更高,对寿命的影响就会更大。

比如A123的磷酸铁锂电池,通常循环寿命可以到3000次以上。但是,A123的磷酸铁锂航模电池,以10C的充电倍率、5C的放电倍率使用,实验室中的寿命缩短到只有600次,而真正实际使用中只有400次左右,可见放电倍率对寿命的影响。

再以比亚迪“秦”为例,只有13KWH的电池驱动峰值功率110KW的电机。可以计算出,当“秦”满电时其最大放电倍率高达8.4C。尤其是当“秦”只有50%电量时,其最大放电倍率可以达到18C。如果电量再低放电倍率将超过25C,这会极大地缩短电池的寿命。

再看P85度电的特斯拉,最大功率310KW的电机,看起来很庞大,其实电池放电倍率不过4C。在只有30%的电量时,最大放电倍率也不过10C。而且特斯拉的大容量电池,在极大程度上避免电池处于大功率的放电之中。

通过简单的对比,就可以看出比亚迪电池的高倍率放电寿命的优越性。

三、温度适应性

极寒对电池的影响,主要表现在充放电倍率低和电容量减少;极热对电池的影响,主要表现为寿命减低、高温安全性以及充放电能力下降。

极寒对于电池的影响相对较轻,因为一般锂电池都可以在零下20度以下使用,而且在电池的放电过程中本身就会产生热量,但能耗的增加以及电量的减少不可避免。

极寒对纯电车的影响和对双模混合动力车又不一样。纯电动车因为没有其他动力来源,在极寒情况下要达到合适的温度,必须依靠电池放电加热,那么对于能耗以及续航里程就会有很大影响。特斯拉在冬天无论是百公里能耗以及续航里程都和平时有显著不同。

对于双模混合动力影响就较弱。因为混动有发动机作为备用提供能量。比如去年11月份比亚迪在包头举行的“秦”推广活动,当时夜间气温在零下15至20度,在早晨极寒的情况下启动车辆,系统会自动切换到HEV模式,发动机带动空调,迅速提高车内温度,当温度提高以后再切换回EV模式。

极热对纯电和混动影响都很大,比如电池本身大功率放电温度就会升高。以普通锂离子电池为例,20C的放电,电池的温度可以提升到接近50度。这么高的温度,不仅对电池的寿命有影响,更重要的是安全隐患。比如特斯拉的三元电池在高温环境下会释放氧气,而氧气是易燃物体。特斯拉通过循环冷却系统降低温度、以硬外壳包裹隔离电池以防止氧气溢出。但是当遇到撞击时还是难免起火。

四、能量密度

能量密度,顾名思义就是单位重量的电池所能容纳的能量。能量密度通常是判断电池优略的重要指标,但是在笔者的分析体系里,能量密度在电池性能指标中不是很重要。

原因有两个:

1.能量密度必须结合其他性能。比如磷酸铁锂电池的能量密度确实不高。但是因为其安全稳定耐高温等特点,以磷酸铁锂为电芯所组成的电池极为简单,不需要太多保护辅助设备。而特斯拉的三元电池虽然电池电芯密度很高,但由于其安全性差不耐高温,所以必须结合一套复杂的电池保护设备,而这些设备都加大了汽车的重量。有报道称在发生连续燃烧事故后,特斯拉又准备加厚电池保护设备,这就将三元电池的能量密度优势消弱了。

2.重量对于汽车的影响不大,特别是对于未来电动汽车的主流趋势混合动力以及小里程纯电动汽车。我们可以设想,以130千瓦时/公斤能量密度和200千瓦时/公斤能量密度的电池做一个对比。即使是最大的80度总电量,两种电池的重量差不过200KG。

这对于一辆接近2吨的汽车影响很低。

因此笔者认为,尽管电池的能量密度自然是越大越好,但并不必要刻意追求最大。特别是能量密度越大越不稳定,这是基本常识。只要达到够用的程度,能量密度不是太重要。

五、成本

成本非常好理解,要广泛普及必须要有成本优势,这在本系列第一篇也已经计算过。小里程纯电或者混动电动车,一方面需要减少车载电池量节约电芯成本,另一方面需要降低电池包+保护设备的成本。因此我们发现,特斯拉的电芯成本虽然较低,但是整体成本依然居高不下。

通过以上论述我们知道,不同锂离子电池都有天然优点和缺点。但重要的是,如何对未来电动车发展的重点要素排序,这样才能选出适合潮流的电池。综上,从安全、寿命、放电能力、温度适应、能量密度、成本等因素综合考虑,笔者认为磷酸铁锂电池最适合未来电动汽车电池的发展方向。

钜大锂电,22年专注锂电池定制

钜大核心技术能力