专业定制医疗锂电池
19年专注锂电池定制
机器人电池定制
低温锂电池

锂电池充电爆炸的主要原因是什么呢

钜大LARGE  |  点击量:9209次  |  2018年09月05日  

摘要
电源,是一切电子产品的生命之源。电源存在漏洞缺陷,尤其是普遍都存在的缺陷,尤其,是被广泛使用在电视,冰箱、空调等各种家用电器以及各种计算机,电力电信等电气设备上的开关电源普遍存在这同一个缺陷,意味着什么?

电源,是一切电子产品的生命之源。

电源存在漏洞缺陷,尤其是普遍都存在的缺陷,尤其,是被广泛使用在电视,冰箱、空调等各种家用电器以及各种计算机,电力电信等电气设备上的开关电源普遍存在这同一个缺陷,意味着什么?

比萨斜塔佐证过自由落体中的重力加速度,而现在,阿尔达时间常数公式,将佐证——看上去风光无限,气象万千,顶着人类智慧光环的整个电子行业,真不过是一座不折不扣的比萨斜塔!

不可思议的是,这一广泛影响了整个世界的电源缺陷,它居然是以一条电子安规检测标准的堂而皇之的形式成为贯穿整个工业3.0时代的BUG。

首先给大家描述一个简单的电子实验,在2个1uF/275VAC的X电容2端分别并联1兆欧姆(0.25瓦)和10K欧姆(5瓦)的电阻,注意同时在X电容两端并联数字万用表,使用750V交流电压档,然后分别依次接上电源插头在220V市电插座上插拔一下,然后迅速拿开脱离电源——您将会准确的观测到大阻值并联的电容两端会出现超过600V的高压残留(数字万用表得到的有效值,如果用示波器,得到的峰值会更高),而并联小阻值的电容两端将不会出现超过400V的残留高压。

这一实验证明:想当然的通过简单的加减乘除法计算得到在无浪涌无干扰的情况下,X电容上不可能出现二倍以上交流电源电压的结论是经不起实证的。

对这个简单的阻容并联电路,在全世界的各个电子产品安规测试标准中,都有基本相同的简要叙述。

在中国国家标准文献GB4943-2001中的叙述文本内容是:

2.1.1.7一次电路的电容器放电

设备在设计上应保证在交流电网电源外部断接处,尽量减小因接在一次电路中的电容器贮存有电荷而产生的电击危险,通过检查设备和有关的电路图来检验其是否合格.检查时考

虑到断开电源时通/断开关可能处于任一位置,如果设备中有任何电容器,其标明的或标称的容量超过0.1uF,而且接在一次电路上,但该电容器的放电时间常数不超过下列规定值,则应认为设备是合格的:——对A型可插式设备:1秒;和——对永久性连接式设备和B型可插式设备:10秒。有关时间常数是指等效电容量(uF)和等效放电电阻值(M)的乘积,如果测定等效电容量和电阻值有困难,则可以在外部断接点测量电压衰减,

在电子产品一次侧电源端接入的电容与电阻并联之后,这个阻容电路相连接的电路里,在交流电的每个上半周期与每个下半周期,电容上的电压的极性都会随交流电的变化而变化,从正到负再从负到正,周而复始的交替出现。

因此,如果并联的放电电阻与电容的时间常数乘积不能小于等于交流电的半周期时间,相反地,如果远大于半周期时间的话(R*C>>1/2F,按照规定的最短时间标准,1秒是交流半周期时间的100倍!),则电容上必然大部分保留有上半个正周期里充电得到的正电压,在下半个负周期里,对电容充电的是负极性电压,两种极性完全相反的电压必然先中和,使电容上的电荷归零,然后再充进负极性电压,这就必然导致电容从电源吸取额外的电流来满足中和的需要,从而引起电源部分的电流异常波动,最后结果是激荡出尖峰高电压,对整个电路产生致命威胁,尤其在电源插头插拔,电源开关打开和关闭瞬间所产生的电火花必然存在频谱丰富的干扰谐波的情形下,以及雷击给电网所带来的强浪涌冲击的情形下将更为凶险。

毫无疑问(有事实佐证),在相当大的程度上,正是这个简单的阻容并联电路上激荡所产生的尖峰干扰冲击电压,成为了无数电子设备内部整个电路系统中引起元器件莫名失效,进而出现功能故障乃至事故的主要而隐蔽的根源。

道理极其简单,因为这条标准从根本上违背了应用在交流电场合所必须遵循的电子学原理,就是阿尔达时间常数公式:RC1/2F,即并联的电容与电阻的时间常数乘积,必须小于或等于交流电正弦波半周期时间!保证每个半周期里电容都能充分放电。

而更为荒谬的事情是,虚线框内所表示的是最基本的EMI(电磁干扰)滤波器,其中的放电电阻通常也是遵循上述1秒放电到30%额定电压的规定,但大部分EMI滤波器内部的X电容边上,甚至没有并联放电电阻。之所以在电源电路中接入X电容以及EMI滤波器,原始目的是用来抑制电磁干扰的,恰恰因为忽视和违背了应用于交流电场合时应该遵循的电子学基本原理,并联接入的放电电阻阻值太大,实际的客观效果上却成为了电磁干扰发生器,并且会在电网一侧因雷击等发生浪涌冲击的时候,不遗余力的推波助澜,最终酿成恶果。

相信不少人都有这样的经验经历:家里每日必开必关的节能灯,常常在又一次打开或关闭的时刻损坏,就是因为在开关瞬间存在不可避免的电火花干扰,而目前的缺陷产品都无法有效抵御这些干扰冲击。

减小并联电阻阻值的同时,需要增大电阻的功率,原理更简单了,电阻阻值的减小自然增加了流经电阻的电流,增大了功率消耗,但增加了这点必要的功耗换来在可靠性,稳定性及使用寿命等全面而明显的改善结果,是与原理相符的。

高电压以及由阻容并联电路激荡而产生的尖峰高压的吸收能力就极其有限了,因此从电源输入端引入的尖峰电压干扰,在经过那个“阻容式干扰发生器”不遗余力地推波助澜之后,不能被吸收掉的那部分尖峰将直接由这个功率变换电路向后级传送,持续对后级电路施加干扰冲击!富有效率地加速设备老化失效的进程。(一些时候,出现的超高尖峰电压将瞬间击穿变压器的绝缘,导致充电的手机端直接带上交流高压,这很可能才是南航空姐真正的死亡原因)

在这样的情形下,尖峰高电压持续的冲击极可能导致的,基本是以下几种结果了:

1)开关管被加速老化,最后因不能承受高压而损坏;

2)开关管可能暂时完好,但后级低压工作电路中最脆弱的关键器件间歇性失常或损坏;

3)开关管与后级电路同时损坏。

以上每一种情况都可能会导致如充电保护电路、电池,功能控制电路等,被尖峰冲击失常导致系统复位或者关键器件损坏,普遍不被关注的是,这些尖峰电压的冲击,只是引起电脑文件系统或者智能手机文件系统的部分数据丢失,最后不得不重装操作系统,这些故障往往被归咎于电源以外的因素。

而在诸如电动车充电器中,如果引起充电时电池瞬间高压击穿短路起火,发生恶性爆炸事故就基本不可避免了。在第二种情形中,通常会让人们造成一种错觉:即认为电源品质没有问题,完全是后级电路损坏的器件自身品质不良(或者电池本身质量不良)引起的。

在绝大多数的智能手机所使用的简易开关电源充电器中,由于普遍性的将充电器当成一个只要能进行电能补给就可以了的装置,因此连这个打了折扣的抗干扰部分都省略掉了。最后,在绝大多数充电器中剩下的所谓的抗干扰措施是:将高压储能电解电容一分为二,在中间串入一个小电感,聊胜于无地做了一道象征性的拦截门槛,当然挡不住来自电网一侧的干扰长驱直入!后级那些被宣扬得神乎其技的电池保护板神马的,仅仅对一定范围内的直流过电压有效,(这些”保护大神“自身的耐压极限很少有超过25V的)对于能置其于死地的尖峰高电压冲击,基本只能坐以待毙。尤其在充电中使用手机时,充电器的稳定性变得极为低下!有时甚至仅仅一条短消息提示音引起的波动,都足以诱发电池爆炸!(特此忠告——小而美的标致尤物类的充电器丝毫代表不了技术含金量,尤其在安全方面)

点击阅读更多 v
钜大锂电,19年专注锂电池定制
钜大精选

钜大核心技术能力