低温18650 3500
无磁低温18650 2200
过针刺低温18650 2200
低温磷酸3.2V 20Ah
21年专注锂电池定制

如何提高动力电池的成组效率

钜大LARGE  |  点击量:1484次  |  2018年07月11日  

随着国家对新能源汽车的续驶里程、动力电池的系统能量密度以及能耗的要求越来越高,动力电池的轻量化已成为一个备受关注的课题,要实现动力电池的轻量化,提高动力电池的成组效率迫在眉睫。


动力电池:如何提高成组效率?


电池成组效率比较


对于不规则的电池箱体,圆柱电池可充分利用空间,相对方形和软包更有优势。通过减小电芯间距和模组轻量化,可使模组成组效率得到较大提高。


软包电芯的单体能量密度比圆柱和方形有更高的提升空间,但对模组设计要求较高,安全性不易把控。


方型电芯更适用于规则箱体,电芯体积变大有利于提高电芯能量密度,后续模组成组效率提升空间有限,有赖于单体电芯能量密度的提升。


据了解,目前,行业内圆柱电芯的模组成组效率约为87%,系统成组效率约为65%;软包电芯模组成组效率约为85%,系统成组效率约为60%;方形电芯的模组成组效率约为89%,系统成组效率约为70%。


如果按照目前的系统成组效率计算,要达到《促进汽车动力电池产业发展行动方案》提出的2020年新型锂离子电池系统能量密度260Wh/kg的要求,那么,圆柱单体电芯就需要达到400Wh/kg,软包单体电芯能量密度要达到433Wh/kg,方形单体电芯能量密度需要达到371Wh/kg。显然,2020年单体电芯能量密度要达到这个水平有难度,那么,进一步提高动力电池的成组效率就变得十分必要和紧迫。


在“‘独具匠心智造未来’新能源行业峰会暨2018新形势下动力电池发展方向研讨会”上,华霆(合肥)动力技术有限公司总裁助理谢睿文表示,提高动力电池成组效率可以从模组优化和轻量化设计两个方面入手。


模组优化设计


模组优化可以从多个方面着手。对于圆柱来说,业内新研发了21700电芯,相较于18650,电芯直径变大后,电池支架板和集流片孔变大,相应重量减轻,电池系统中电芯数量减少,同时焊接配件的数量也相应减少。


提升空间利用率也是优化模组的一个重要途径。动力电池PACK企业可以通过改进模组和热管理系统设计,缩小电芯间距,从而提升电池箱体内空间的利用率。


还有一种解决方案,即使用新材料。比如,动力电池系统内的汇流排(并联电路中的总线,一般用铜板做成)由铜替换成铝,模组固定件由钣金材料替换为高强钢和铝,这样也能减轻动力电池重量。


壳体轻量化设计


相对于新能源汽车的其他部件而言,动力电池壳体对防撞、防水、防火、防尘等方面的要求尤为严苛。除保障、容纳电池外,动力电池壳体还要有效隔绝操作人员、乘客与电池的接触,所以,动力电池箱体防护等级较高。因此,动力电池壳体的轻量化有一定的难度,既要保障动力电池和乘客的安全,也要切实做到轻量化。


据测算,如果将动力电池钣金壳体换为全铝壳体,重量可减轻30%左右。此外,碳纤维材料也被视为比较有潜力的壳体材料。碳纤维材料密度小、重量轻,抗拉强度在3400MPa以上,且耐腐蚀、耐高温,在吸收冲击力上也有很大的优势,是实现汽车轻量化的上佳材料。然而,由于存在技术难度等原因,碳纤维电池箱价格高于普通材料,普及尚需时日。随着碳纤维生产技术的不断成熟,以及新能源汽车的快速发展,碳纤维电池箱需求量也会进一步加大。


从目前看,提高动力电池系统能量密度的方法不是太多,无外乎从提高单体能量密度和模组优化以及壳体的轻量化这几个方面着手。总之,在动力电池带电量一定的情况下,尽量提高其成组效率。


钜大锂电,22年专注锂电池定制

钜大核心技术能力