低温18650 3500
无磁低温18650 2200
过针刺低温18650 2200
低温磷酸3.2V 20Ah
21年专注锂电池定制

自放电测量系统关键点

钜大LARGE  |  点击量:987次  |  2020年11月27日  

1)选取合适的SOC


dOCV/dT受SOC影响,温度对OCV的影响在平台处被显著放大,带来很大的SOC预测误差。需选择对温度变化相对不敏感的SOC测试自放电,如:FC1865:25%SOC测自放电;LC1865:50%SOC测自放电。


因电池容量差异,故实际电池的SOC存在波动,公差约为4%左右,故考察5%的公差范围内OCV曲线斜率的变化。LC186553%和99.9%SOC处斜率很稳定,分别为3.8mV/%SOC和10mV/%SOC。FC1865~25%SOC处斜率比较稳定;当然满电态也是个简单实用的自放电测量点。


2)起始时间的选定


FC186525%SOC下(也可以是其他SOC值)看充电结束后每小时电压变化,20h以后电压降速率基本一致,可以认为极化已基本恢复。故选取24h作为自放电测试起始时间。


LC186550%SOC下14h以后电压变化速率在0.01mV/h上下小范围波动,可以认为极化已基本恢复,选取24h作为自放电起始点是可行的。


3)储存温度和时间


储存温度和时间对自放电的影响(LC1865H)


在研究区间内,自放电与时间和温度均呈显著的线性关系。可将自放电模型拟合为:自放电=0.23*t+0.39*(T-25)。(以上数值和关系式和电池体系有关,常量会相应变化,以下其他关系也是。)


常温下由于化学反应速率的降低,其物理自放电的异常点表现更明显。14D储存能够非常好的预测28D的结果。


3、自放电测量系统的改进


1)测电压温度


测电压环境温度对自放电的影响:FC1865:每增加1℃,电压下降0.05mV;LC1865:每增加1℃,电压下降0.17mV。


2)电压表选型


在电压表的选择上,由于自放电研究的是0.1mV层面的变化,传统的4位半电压表(精确到1mV,分辨率到0.1mV)已不适合,故选用六位半Agilent34401A电压表,(精确达到0.1mV,分辨率达到0.01mV甚至更高)。另外该量仪的重复性也相当不错。


4、自放电标准的确定


1)理论推算


2)1mV差异模拟


通过人为调整10%SOC差异模拟1mV(28天1mv,14天0.5mv的差异)自放电差异使用3年后的Balance结果。3组电池均未发生过充的安全问题,但是放电时的电压差已经非常大(1200mV),自放电大的电池被过放至2.5V,PACK容量损失10%。


自放电影响因素及控制要点


一、原材料金属杂质


1、金属杂质的影响机理


电池中:金属杂质发生化学和电化学腐蚀反应,溶解到电解液:M→Mn++ne-;此后,Mn+迁移到负极,并发生金属沉积:Mn++ne-→M;随着时间的增加,金属枝晶在不断生长,最后穿透隔膜,导致正负极的微短路,不断消耗电量,导致电压降低。


注:以上只是最常见的形式,还可能有很多其他的影响机理。


2、不同种类金属屑影响程度


(1)正极浆料中添加不同种类金属屑


可定性的对影响程度排序:Cu>Zn>Fe>Fe2O3


注:原则上,只要是金属杂质(如以上未列出的还有FeS\FeP2O7…),都会对自放电产生较大影响,影响程度一般是金属单质最强。


金属屑电池的隔膜黑点形貌深(穿透到另一面)、数量多:


隔膜黑点的金属元素成分与添加的金属种类相吻合,说明隔膜黑点上的金属元素确实来源于金属杂质:


(2)负极浆料中添加不同种类金属屑


负极浆料中金属杂质的影响不及正极浆料中的金属杂质;其中,Cu、Zn对自放电有显著影响;Fe、氧化铁未观察到显著影响。


钜大锂电,22年专注锂电池定制

钜大核心技术能力