低温18650 3500
无磁低温18650 2200
过针刺低温18650 2200
低温磷酸3.2V 20Ah
21年专注锂电池定制

开发钠离子电池的原因是什么

钜大LARGE  |  点击量:1263次  |  2020年09月22日  

关于钠离子电池我们关注的焦点,一个是成本要低,正极材料要去锂脱钴,不用锂离子,也不用成本较高的钴原料;第二是在电动汽车和储能方面都要求电池寿命要长;第三是安全性要好;最后是能量密度要比较合适。


钠离子电池和锂离子电池的反应机理相近,正极材料除了磷酸盐或氟化磷酸盐以外,还可以用镍锰层状过渡金属氧化物。在负极材料方面可选择碳类、合金和化合物。在三大类负极材料中,我们还是选择最便宜的碳材料。我们关于负极碳材料又进行了软碳、硬碳和石墨烯三个分类的研究。


我们最近的一些研究成果,其中一个是采用层状结构Na0.67Ni0.33-xMxMn0.67O2作正极材料。经过实验研究和比较,在制备正极原材料的使用上,我们认为使用醋酸盐或草酸盐更好。根据文献报道,正极材料假如只用镍锰氧化物,它的循环性能和充电到高电位时的稳定性较差。所以有文献报道可以用镁掺杂,替代镍位,这样的话期待它的容量可以更高,这种方法关于获得高能量密度的钠离子电池是很有帮助的。除了镁以外,其他掺杂的元素可不可以呢?我们选择与替代元素离子半径相近的元素做掺杂,比如替代镍位,我们选了锆(Zr)离子和铜(Cu)离子进行掺杂。材料掺杂后与掺杂前电化学性能和循环性能都有提高,Zr掺杂和Cu掺杂相比,Cu掺杂的循环稳定性更好。


负极方面,由于软碳材料处理的方法比较多,我们尝试了用磷掺杂软碳。掺杂磷后放电容量可以提高30%以上,循环特性好。为何掺磷后材料性能提高呢?这是由于掺磷后可以新增钠吸附的活性点。在传统的嵌入反应之外,还多了一些钠离子吸附的活性点位。另外,在硬碳方面,我们选用了椰壳、杏壳等生物质材料,通过处理,最终获得硬碳材料。通过拉曼分析可以发现,这些材料是短层有序、长层无序的结构,微晶的层间距较大,适合钠离子嵌入。


通过循环实验可以看到,经过200次循环,容量基本没有衰降,循环稳定性很好。由此可见,这些生物质材料是很好的廉价的钠离子电池负极材料。再有,关于石墨烯负极我们也做了研究。石墨烯材料最大的问题是密度比较低,将来能不能做成高体积比能量的电池还是问题。所以可以考虑将石墨烯和其他负极材料如硬碳、软碳,以及化合物类或合金类材料进行复合。


我们做了1.5Ah和0.5Ah两种软包全电池,正极材料采用前面提到的镍锰氧化物,负极采用生物质的硬碳材料,经300次循环后容量衰降为15%。由此可见,钠离子电池用廉价材料是可以制备的,而且电性能良好。


钜大锂电,22年专注锂电池定制

钜大核心技术能力